# Semi device-independent security of one-way QKD 

Nicolas Brunner \& Marcin Pawlowski

PRA 84, 010302(R) (2011)

## Device-Independent (DI) QKD

Acin, Barrett, NB, Colbeck, Ekert, Gisin, Hanggi, Hardy, Kent, Masanes, Massar, Pironio, Renner, Scarani, Wolf...

Fundamental \& practical interest
Based on nonlocality (Bell violation)


Implementation is very challenging: loophole-free Bell test (Gisin, Pironio, Sangouard, PRL 2010)

## Device-Independent (DI) QKD

Acin, Barrett, NB, Colbeck, Ekert, Gisin, Hanggi, Hardy, Kent, Masanes, Massar, Pironio, Renner, Scarani, Wolf...

Fundamental \& practical interest
Based on nonlocality (Bell violation)


Implementation is very challenging: loophole-free Bell test (Gisin, Pironio, Sangouard, PRL 2010)

Can we think of something simpler?

## Semi DI QKD

Semi DI scenario:
Uncharacterized devices but bounded Hilbert space dimension
Security proof for 1-way (prepare \& measure) configuration
Proof based on dimension witnesses and random-access-codes Not on entanglement

Alice


## Setup



## Setup



Can we make a device-independent (DI) statement about the dimensionality of $\rho_{x}$ ?

## Data Table

| $\mathrm{m1}$ |  |  |  | m 2 |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | +1 | -1 | +1 | -1 | $\ldots$ |
| $P 1$ | $P(+1 \mid 1,1)$ | $P(-1 \mid 1,1)$ | $P(+1 \mid 1,2)$ | $P(-1 \mid 1,2)$ |  |
| $P 2$ | $P(+1 \mid 2,1)$ | $P(-1 \mid 2,1)$ | $P(+1 \mid 2,2)$ | $P(-1 \mid 2,2)$ |  |
| $\ldots$ |  |  |  |  |  |

Given a data table, can we find useful bounds on the classical and quantum dimensions?

## Testing classical systems


$\Lambda_{x}$ is a classical state of dimension d , ie a probability distribution over dits Experiment $=$ set $\vec{E}$ of correlators $E_{x y}=P(b=+1 \mid x, y)-P(b=-1 \mid x, y)$

## Testing classical systems


$\Lambda_{x}$ is a classical state of dimension $d$, ie a probability distribution over dits
Experiment $=$ set $\vec{E}$ of correlators $E_{x y}=P(b=+1 \mid x, y)-P(b=-1 \mid x, y)$
Dimension witness $\quad \vec{W} \cdot \vec{E}=\sum w_{x y} E_{x y} \leq C_{d}$
( $\sim$ Bell inequality for data tables)

$$
x, y
$$

## Dimension witnesses

Simple observation: if $\mathrm{N}<=\mathrm{d}$ then all experiments can be reproduced classically

## Dimension witnesses

Simple observation: if $\mathrm{N}<=\mathrm{d}$ then all experiments can be reproduced classically


How to find dimension witnesses?


Geometrical approach

## Geometry



Set of experiments possible with classical systems of dim d is a polytope
$\longrightarrow$ Facets $=$ Tight classical dim-witness

$$
\vec{W} \cdot \vec{E}=\sum_{x, y} w_{x y} E_{x y} \leq C_{d}
$$

$$
\leq Q_{d} \quad Q \text { dimension witness }
$$

## Example

Simplest case: 3 preparations and 2 measurements


## Example

Simplest case: 3 preparations and 2 measurements


Importance of $3^{\text {rd }}$ preparation: CHSH is not a witness (Leggett-Garg not DI)

## What can we do with this quantum advantage ?

- No-go theorem for ontological models

Exponential separation
Family of data tables: QM $\rightarrow$ dim d Classicaly $\rightarrow \operatorname{dim} \geq 2^{\wedge} d$

The universe is not exponentially complicated
Barrett,NB,Gallego,Gogolin (in preparation)

- Security proof for semi DI QKD


## Semi DI QKD



## BB84

4 qubit preparations (|+z>, |-z>, |+x>, |-x>) and 2 measurements $(Z, X)$

|  | $M 1$ | $M 2$ |
| :---: | :---: | :---: |
| P1 | +1 | 0 |
| P2 | 0 | -1 |
| P3 | 0 | +1 |
| P4 | -1 | 0 |



Does not violate any 2-dim classical witness!
Can be reproduced by sending a classical bit

## BB84

4 qubit preparations ( $1+z>, 1-z>,|+x>|-x>$,$) and 2$ measurements $(Z, X)$ basis outcome


Does not violate any 2-dim classical witness!
Can be reproduced by sending a classical bit

## No security in a semi-DI scenario

Strategy $\quad \lambda=0$ : Alice sends $m=a 0+a 1$, Bob outputs $b=m+y$
If $\mathrm{y}=\mathrm{a} 0$, then $\mathrm{b}=\mathrm{a} 1 \quad$ else $\mathrm{b}=\mathrm{a} 1+1$
$\lambda=1$ : Alice sends $m=a 1$, Bob outputs $b=m=a 1$

## Dimension witness and random access codes



## Dimension witness and random access codes



This witness corresponds exactly to a 1 -out-of-2 random access code (RAC)

$$
\begin{aligned}
& \text { P_guess }=(I+8) / 16 \\
& I \leq 4 \text { corresponds to } \begin{array}{l}
\text { P_guess } \leq 3 / 4 \\
\text { (classical limit for RAC) }
\end{array}
\end{aligned}
$$

## Dimension witness and random access codes



This witness corresponds exactly to a 1 -out-of-2 random access code (RAC)

$$
\begin{aligned}
& \text { P_guess }=(I+8) / 16 \\
& I \leq 4 \text { corresponds to } \begin{array}{l}
\text { P_guess } \leq 3 / 4 \\
\text { (classical limit for RAC) }
\end{array}
\end{aligned}
$$

For qubits, P_guess $<=\cos ^{2}($ pi/8) $\sim 0.85$


## Security proof

Individual attacks: Csiszar \& Korner (1978) $I(A: B)>I(A: E)$

$$
P_{B}>P_{E} \quad \Longleftrightarrow \text { Positive key rate }
$$

Proof based on a result by R. König (PhD thesis)

$$
F_{n} \text { : set of balanced boolean functions on } n \text {-bit strings }
$$

Alice receives a (uniformly chosen) n-bit string; Bob receives a function in $F_{n}$ Alice sends $s$ qubits to Bob. Bob's probability of guessing is bounded by

$$
P_{n} \leq \frac{1}{2}\left(1+\sqrt{\frac{2^{s}-1}{2^{n}-1}}\right)
$$

## Security proof

We have $n=2, s=1$

$$
P_{B}\left(a_{0}\right)+P_{B}\left(a_{1}\right)+P_{B}\left(a_{0} \oplus a_{1}\right) \leq \frac{3}{2}\left(1+\frac{1}{\sqrt{3}}\right)
$$

Assume Bob and Eve collaborate

$$
\begin{gathered}
P_{B E}\left(a_{0}\right)+P_{B E}\left(a_{1}\right)+P_{B E}\left(a_{0} \oplus a_{1}\right) \geq 2 P_{B}\left(a_{0}\right)+2 P_{E}\left(a_{1}\right)-1 \\
\begin{aligned}
& P_{B E}\left(a_{0} \oplus a_{1}\right) \geq P_{B E}\left(a_{0}, a_{1}\right) \\
& \geq P_{B E}\left(a_{0}\right)+P_{B E}\left(a_{1}\right)-1
\end{aligned} \\
\begin{aligned}
& \\
& \square P_{B E}\left(a_{i}\right) \geq P_{B}\left(a_{0}\right)+P_{E}\left(a_{1}\right) \leq \frac{5+\sqrt{3}}{4} \\
& \square \square P_{B}+P_{E} \leq \frac{5+\sqrt{3}}{4} \\
& \square P_{E} \text { when } P_{B}>\frac{5+\sqrt{3}}{8} \approx 0.8415
\end{aligned}
\end{gathered}
$$

## Security proof

We have $n=2, s=1$

$$
P_{B}\left(a_{0}\right)+P_{B}\left(a_{1}\right)+P_{B}\left(a_{0} \oplus a_{1}\right) \leq \frac{3}{2}\left(1+\frac{1}{\sqrt{3}}\right)
$$

Assume Bob and Eve collaborate


$$
P_{B}\left(a_{0}\right)+P_{E}\left(a_{1}\right) \leq \frac{5+\sqrt{3}}{4} \square P_{B}+P_{E} \leq \frac{5+\sqrt{3}}{4}
$$

$P_{B}>P_{E} \quad$ when $\quad P_{B}>\frac{5+\sqrt{3}}{8} \approx 0.8415$
Qubits can reach $\left.P_{B}=\cos ^{2}(\pi / 8)\right) \approx 0.8536$

## Relevance of the semi-DI approach?

## Conceptual interest

proof not based on entanglement

## Practical viewpoint

Not fully DI (side-channels?)
Relaxation compared to usual security proofs
Alice is Semi-DI (preparations of given dimension but non-characterized) Bob is fully DI

## Open questions

## Practical

What about more general attacks?
Larger key rates?

Can security be guaranteed with qubits under the assumption that $\mathrm{d}>2$ ?

## Conceptual

Does violation of a dimension witness imply security?

Link to contextuality?
Is preparation contextuality a resource for semi-DI QKD?

