Semi device-independent security of one-way QKD

Nicolas Brunner & Marcin Pawlowski

PRA 84, 010302(R) (2011)

QCRYPT 2011 ETH Zurich

Device-Independent (DI) QKD

Acin, Barrett, NB, Colbeck, Ekert, Gisin, Hanggi, Hardy, Kent, Masanes, Massar, Pironio, Renner, Scarani, Wolf...

Fundamental & practical interest

Based on nonlocality (Bell violation)

Entanglement

Implementation is very challenging: **loophole-free Bell test** (Gisin, Pironio, Sangouard, PRL 2010)

Device-Independent (DI) QKD

Acin, Barrett, NB, Colbeck, Ekert, Gisin, Hanggi, Hardy, Kent, Masanes, Massar, Pironio, Renner, Scarani, Wolf...

Fundamental & practical interest

Based on nonlocality (Bell violation)

Entanglement

Implementation is very challenging: **loophole-free Bell test** (Gisin, Pironio, Sangouard, PRL 2010)

Can we think of something simpler?

Semi DI QKD

Semi DI scenario: Uncharacterized devices but bounded Hilbert space dimension

Security proof for 1-way (prepare & measure) configuration

Proof based on dimension witnesses and random-access-codes Not on entanglement

Setup

Setup

Can we make a device-independent (DI) statement about the dimensionality of ρ_x ?

Data Table

	m	1	m		
	+1	-1	+1	-1	
P1	P(+1 1,1)	P(-1 1,1)	P(+1 1,2)	P(-1 1,2)	
P2	P(+1 2,1)	P(-1 2,1)	P(+1¦2,2)	P(-1¦2,2)	

Given a data table, can we find useful bounds on the classical and quantum dimensions?

N. Harrigan, T. Rudolph, and S. Aaronson, arXiv:0709.1149

Testing classical systems

 Λ_x is a classical state of dimension d, ie a probability distribution over dits Experiment = set \vec{E} of correlators $E_{xy} = P(b = +1|x, y) - P(b = -1|x, y)$

Testing classical systems

 Λ_x is a classical state of dimension d, ie a probability distribution over dits Experiment = set \vec{E} of correlators $E_{xy} = P(b = +1|x, y) - P(b = -1|x, y)$ Dimension witness $\vec{W} \cdot \vec{E} = \sum_{x,y} w_{xy} E_{xy} \leq C_d$ (~Bell inequality for data tables)

R. Gallego, NB, C. Hadley, A. Acin, PRL 2010

Dimension witnesses

Simple observation: if N<=d then all experiments can be reproduced classically

N > d (more preparations than tested dimension)

Dimension witnesses

Simple observation: if N<=d then all experiments can be reproduced classically

N > d (more preparations than tested dimension)

How to find dimension witnesses?

Set of experiments possible with classical systems of dim d is a polytope

$$\vec{W} \cdot \vec{E} = \sum_{x,y} w_{xy} E_{xy} \le C_d$$
$$\le Q_d$$

Q dimension witness

Example

Simplest case: 3 preparations and 2 measurements

Example

Simplest case: 3 preparations and 2 measurements

Importance of 3rd preparation: CHSH is not a witness (Leggett-Garg not DI)

What can we do with this quantum advantage ?

• No-go theorem for ontological models

Exponential separation Family of data tables: $QM \rightarrow dim d$ Classicaly $\rightarrow dim \ge 2^{d}$

The universe is not exponentially complicated

Barrett,NB,Gallego,Gogolin (in preparation)

Security proof for semi DI QKD

Semi DI QKD

BB84

4 qubit preparations (|+z>, |-z>, |+x>, |-x>) and 2 measurements (Z,X)

Does not violate any 2-dim classical witness!

Can be reproduced by sending a classical bit

No security in a semi-DI scenario

BB84

4 qubit preparations (¦+z>, ¦-z>, ¦+x>, ¦-x>) and 2 measurements (Z,X) basis outcome

Does not violate any 2-dim classical witness!

Can be reproduced by sending a classical bit

No security in a semi-DI scenario

Strategy λ=0: Alice sends m=a0+a1, Bob outputs b=m+y If y=a0, then b=a1 else b=a1+1 λ=1: Alice sends m=a1, Bob outputs b=m=a1

Dimension witness and random access codes

	M1	M2		
P1	+	+		
P2	+	-	< 4	(for classical bits)
P3	-	+		
P4	-	-		

Dimension witness and random access codes

This witness corresponds exactly to a 1-out-of-2 random access code (RAC)

P_guess = (I + 8) / 16

 $I \le 4$ corresponds to P_guess $\le \frac{3}{4}$ (classical limit for RAC)

Dimension witness and random access codes

This witness corresponds exactly to a 1-out-of-2 random access code (RAC)

P_guess = (I + 8) / 16 $I \le 4$ corresponds to P_guess $\le \frac{3}{4}$ (classical limit for RAC) For qubits, P_guess <= $\cos^2(pi/8) \sim 0.85$ See also S. Wehner, M. Christandl, A. Doherty, PRA 2008 P1 M1 P2 01 P3 10 P4 11

Security proof

Individual attacks: Csiszar & Korner (1978) I(A : B) > I(A : E)

$$P_B > P_E$$
 \blacksquare Positive key rate

Proof based on a result by R. König (PhD thesis)

 F_n : set of balanced boolean functions on n-bit strings

Alice receives a (uniformly chosen) n-bit string; Bob receives a function in F_n Alice sends s qubits to Bob. Bob's probability of guessing is bounded by

$$P_n \le \frac{1}{2} \left(1 + \sqrt{\frac{2^s - 1}{2^n - 1}} \right)$$

Security proof

We have n=2, s=1 $P_B(a_0) + P_B(a_1) + P_B(a_0 \oplus a_1) \le \frac{3}{2} \left(1 + \frac{1}{\sqrt{3}} \right)$

Assume Bob and Eve collaborate $P_{BE}(a_0) + P_{BE}(a_1) + P_{BE}(a_0 \oplus a_1) \ge 2P_B(a_0) + 2P_E(a_1) - 1$ $P_{BE}(a_0 \oplus a_1) \geq P_{BE}(a_0, a_1)$ $P_{BE}(a_i) \ge P_B(a_i)$ $\geq P_{BE}(a_0) + P_{BE}(a_1) - 1$ $\square P_B(a_0) + P_E(a_1) \le \frac{5 + \sqrt{3}}{4} \square P_B + P_E \le \frac{5 + \sqrt{3}}{4}$ $P_B > P_E$ when $P_B > \frac{5 + \sqrt{3}}{2} \approx 0.8415$

Security proof

We have n=2, s=1
$$P_B(a_0) + P_B(a_1) + P_B(a_0 \oplus a_1) \le \frac{3}{2} \left(1 + \frac{1}{\sqrt{3}} \right)$$

Assume Bob and Eve collaborate $P_{BE}(a_0) + P_{BE}(a_1) + P_{BE}(a_0 \oplus a_1) \ge 2P_B(a_0) + 2P_E(a_1) - 1$ $P_{BE}(a_0 \oplus a_1) \geq P_{BE}(a_0, a_1)$ $P_{BE}(a_i) \ge P_B(a_i)$ $\geq P_{BE}(a_0) + P_{BE}(a_1) - 1$ $\square P_B(a_0) + P_E(a_1) \le \frac{5 + \sqrt{3}}{4} \square P_B + P_E \le \frac{5 + \sqrt{3}}{4}$ $P_B > P_E \quad \text{when} \quad P_B > \frac{5 + \sqrt{3}}{8} \approx 0.8415$ Qubits can reach $P_B = \cos^2(\pi/8)) \approx 0.8536$ Security

Relevance of the semi-DI approach?

Conceptual interest

proof not based on entanglement

Practical viewpoint

Not fully DI (side-channels?)

Relaxation compared to usual security proofs Alice is Semi-DI (preparations of given dimension but non-characterized) Bob is fully DI

Open questions

Practical

What about more general attacks?

Larger key rates?

Can security be guaranteed with qubits under the assumption that d>2?

Conceptual

Does violation of a dimension witness imply security?

Link to contextuality? Is preparation contextuality a resource for semi-DI QKD?