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Position-based cryptography 

• In cryptography, the parties use credentials 
such as digital keys or biometric features 

 

• Position-based cryptography aims to use 
geographical position as a new credential 



Position verification 

The most basic task: 

 

A prover has to convince multiple verifiers that 
he/she is at a certain location. 

 

(For simplicity, let’s only consider 1 dimension) 

 



Quantum position verification in one dimension 
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The view of the attackers 

Multiple colluding adversaries 
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General quantum attacks 

• Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky 
and Schaffner show a general quantum attack, using 
a shared state of doubly exponential many qubits. 

 

• Currently, any scheme can be attacked using pre-
shared entanglement of exponential size. 
(Beigi and König) 
 

• On the positive side: 
With no entanglement, security can be proven. 



The next step 

• Position-based quantum crypto might still be 
possible 

 

• Are there schemes that are efficient for the 
honest parties, but require a lot of resources 
to attack? 

 

• Zoom in on one set of schemes 



Our Work 

• For a specific class of schemes we obtain a trade-off: 
 
Increased classical communication for the honest 
players  bigger quantum state for the attackers 

 

• The security of these schemes can be linked to 
classical complexity theory 

 

• A new model of communication complexity:  
the garden-hose model 



Example scheme 

Verifier 0 sends qubit |𝜓⟩ to the Prover 

 

Verifier 1 sends bit 𝑏 ∈ {0,1} to the Prover 

 

The Prover sends |𝜓⟩ to Verifier 0 or 1 depending on 𝑏 
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Attacking the example scheme 

𝑉0  𝑉1  
Alice Bob 

Alice starts with |𝜓⟩, Bob starts with 𝑏. 
One round of simultaneous communication 
Now Alice must have |𝜓⟩ if 𝑏 = 0. 
Otherwise, Bob must have |𝜓⟩. 

Alice Bob 

|𝜓⟩ 𝑏 

𝑏 = 1 → |𝜓⟩ 𝑏 = 0 → |𝜓⟩ 



Attacking the example scheme 

• The task of Alice and Bob is impossible if they share 
no entanglement 

 

• But if they do... 
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Attacking the example scheme 
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Attacking the example scheme 
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Attacking the example scheme 
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Attacking the example scheme 
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Attacking the example scheme 
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The class of schemes 

Instead of one bit, we use a function: 

• 𝑉0 sends |𝜓⟩ and 𝑛-bit string 𝑥 to Prover 

• 𝑉1 sends 𝑛-bit string 𝑦 to Prover 

 

• Prover computes function 𝑓(𝑥, 𝑦) and 
sends |𝜓⟩  to 𝑉0 or 𝑉1 depending on 
outcome 

Adrian Kent, William Munro, and Timothy Spiller 
Quantum tagging: Authenticating location via quantum  
Information and relativistic signaling constraints. 
Physical Review A, 84(1), July 2011. 



The class of schemes 
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The attack as a game 

Alice starts with 𝑥, 𝜓  
Bob starts with 𝑦. 
One round of simultaneous communication 
Alice must have |𝜓⟩ if 𝑓 𝑥, 𝑦 = 0. 
Otherwise, Bob must have |𝜓⟩. 

Alice Bob 
𝑓(𝑥, 𝑦)  

𝑥, |𝜓⟩ 𝑦 

𝑓 𝑥, 𝑦 = 1 → |𝜓⟩ 𝑓 𝑥, 𝑦 = 0 → |𝜓⟩ 

𝑉0  𝑉1  
Alice Bob 



Breaking the schemes 
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Using 2 ⋅ 2𝑛 EPR pairs 
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⋮ 
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Attacks 

• Exponentially many qubits, not feasible 

• Breaking might be much easier for some 
functions 𝑓(𝑥, 𝑦) 

 

• We would like a function 𝑓(𝑥, 𝑦) that is easily 
computable for the Prover, but gives a scheme 
that is hard to break 



The Garden-Hose Model 

Alice and Bob share 𝑠 pipes between them. 

𝑦 ∈ 0,1 𝑛 

𝑥 ∈ 0,1 𝑛 

𝑓(𝑥, 𝑦)  



The Garden-Hose Model 

Alice and Bob share 𝑠 pipes between them. 

𝑦 ∈ 0,1 𝑛 
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𝑓(𝑥, 𝑦)  



The Garden-Hose Model 

They connect the pipes with pieces of hose. 
Alice also has a water tap she connects. 

𝑦 ∈ 0,1 𝑛 𝑥 ∈ 0,1 𝑛 

𝑓(𝑥, 𝑦)  



The Garden-Hose Model 
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Alice also has a water tap she connects. 
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The Garden-Hose Model 

They connect the pipes with pieces of hose. 
Alice also has a water tap she connects. 
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The Garden-Hose Model 

They connect the pipes with pieces of hose. 
Alice also has a water tap she connects. 

𝑦 ∈ 0,1 𝑛 𝑥 ∈ 0,1 𝑛 
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The Garden-Hose Model 

They connect the pipes with pieces of hose. 
Alice also has a water tap she connects. 

𝑦 ∈ 0,1 𝑛 𝑥 ∈ 0,1 𝑛 

𝑓(𝑥, 𝑦)  



The Garden-Hose Model 

They connect the pipes with pieces of hose. 
Alice also has a water tap she connects. 

𝑓 𝑥, 𝑦 = 0 

𝑦 ∈ 0,1 𝑛 𝑥 ∈ 0,1 𝑛 

𝑓(𝑥, 𝑦)  



The Garden-Hose Model 

A strategy in the garden-hose model for a function 𝑓 
gives an attack on that scheme. 
(Number of pipes  number of EPR pairs.) 

 

The garden-hose complexity upper bounds the  
entanglement needed to break corresponding scheme 

 

The garden-hose model captures a class of perfect 
attacks. 

Alice Bob 
𝑓(𝑥, 𝑦)  

𝑥 ∈ 0,1 𝑛 𝑦 ∈ 0,1 𝑛 



 

Instructions: 𝑖, 𝜋, 𝜏  with 𝜋, 𝜏 ∈ 𝑆5 

Evaluate to 𝜋 if 𝑥𝑖 = 1, evaluate to 𝜏 if 𝑥𝑖 = 0 

 

The branching program is a list of these instructions: 

𝑖1, 𝜋1, 𝜏1 𝑖2, 𝜋2, 𝜏2 𝑖3, 𝜋3, 𝜏3 = 𝑒 if circuit outputs 0 

Otherwise a 5-cycle 

Barrington’s Theorem: 
 
Logarithmic depth circuits can be computed by a width-5 
permutation branching program of polynomial length. 



Applying Barrington’s theorem 

Proof sketch: 

Barrington’s theorem gives a polynomially long list of 
instructions. 

Assume these instructions alternate between depending on 𝑥 
and 𝑦. 

 

Permutation branching program outputs: 

The identity permutation when 𝑓 𝑥, 𝑦 = 0 

and a 5-cycle when 𝑓 𝑥, 𝑦 = 1 

If 𝑓(𝑥, 𝑦) has a log-depth circuit, the garden-hose complexity of 𝑓 
is bounded by a polynomial. 



Applying Barrington’s theorem 

For every even instruction 𝑘 in the permutation branching program 

To the pipe corresponding to 𝜋1(1), 
with 𝜋1 the output of the first instruction 

According to 𝜋𝑘, 
with 𝜋𝑘 the output of 
the current instruction 

Using 𝜋𝑘+1 



Logarithmic space computations 

If 𝑓 𝑥, 𝑦  can be computed in logarithmic space,  
 
then the garden-hose complexity of 𝑓 is 
polynomial. 

 

Corollary: If 𝐿 = 𝑃 then every efficiently 
computable function’s scheme can be broken 
using a polynomial amount of EPR pairs 



Other results 

• Garden-hose lower bounds: 

– Linear lower bound for many functions 

– There exist functions that need an exponential 
number of pipes 

• Quantum lower bounds 

– For specific functions: logarithmic number of 
qubits 

– There exist functions that need a linear number of 
qubits 

Alice Bob 
𝑓(𝑥, 𝑦)  

𝑥 ∈ 0,1 𝑛 𝑦 ∈ 0,1 𝑛 



Summary 
• Position-based quantum cryptography might still 

be possible when the pre-shared state is bounded 
 

• A new model of communication complexity: the 
garden-hose model 
 

• In the considered schemes: 
more classical computation for the Prover  
Adversaries need a bigger quantum state 
 

• The security of these schemes can be linked to 
classical complexity theory 



Further work 

• Extend the results to a randomized setting 
 

• Parallel repetition theorems 

 

• Closing the gap between upper and lower bounds 

 

• Find a function in 𝑃 that needs exponential 
entanglement (assuming 𝑃 ≠ 𝐿) 

 



Thank you! 


