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Position-based cryptography

* |n cryptography, the parties use credentials
such as digital keys or biometric features

* Position-based cryptography aims to use
geographical position as a new credential



Position verification

The most basic task:

A prover has to convince multiple verifiers that
he/she is at a certain location.

(For simplicity, let’s only consider 1 dimension)



Quantum position verification in one dimension
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Assume:

Communication at by the speed of light
Instantaneous computation

Verifiers can coordinate actions




The view of the attackers

Multiple colluding adversaries
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General guantum attacks

 Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky
and Schaffner show a general quantum attack, using
a shared state of doubly exponential many qubits.

e Currently, any scheme can be attacked using pre-
shared entanglement of exponential size.
(Beigi and Konig)

* On the positive side:
With no entanglement, security can be proven.



The next step

* Position-based quantum crypto might still be
possible

e Are there schemes that are efficient for the
honest parties, but require a lot of resources
to attack?

e Z700m in on one set of schemes



Our Work

* For a specific class of schemes we obtain a trade-off:

Increased classical communication for the honest
players = bigger quantum state for the attackers

* The security of these schemes can be linked to
classical complexity theory

* A new model of communication complexity:
the garden-hose model



Example scheme

Verifier 0 sends qubit |Y) to the Prover
Verifier 1 sends bit b € {0,1} to the Prover

The Prover sends |i) to Verifier 0 or 1 dependingon b
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Attacking the example scheme

| |
Vo | N
Alice €==========—=—===- 2> Bob

Alice starts with |y), Bob starts with b.

One round of simultaneous communication
Now Alice must have |Y) if b = 0.
Otherwise, Bob must have ).

- Alice Bob

b=0-[) b=1-[)



Attacking the example scheme

* The task of Alice and Bob is impossible if they share
no entanglement

e But if they do...




Attacking the example scheme

Bell measurement, k
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- Bell measurement




Attacking the example scheme

b=20

- Bell measurement
l

Ve

3 4
-

°
-
1) e
L o

V)



Attacking the example scheme

b=20

Alice only knows that she has the qubit after receiving Bob’s message
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Attacking the example scheme

Bell measurement, k b — 1
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Attacking the example scheme

b=1




The class of schemes

Instead of one bit, we use a function:

* I/, sends |Y) and n-bit string x to Prover
* /] sends n-bit string y to Prover

* Prover computes function f(x,y) and

sends [Y) to V, or V; depending on
outcome

Adrian Kent, William Munro, and Timothy Spiller
Quantum tagging: Authenticating location via quantum
Information and relativistic signaling constraints.
Physical Review A, 84(1), July 2011.



The class of schemes
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Attacking the schemes

Public function f
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The attack as a game

| |
Vo | | 1
Alice €===========————- > Bob

Alice starts with x, |)

Bob starts with y.

One round of simultaneous communication
Alice must have |y) if f(x,y) = 0.
Otherwise, Bob must have |y).
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Breaking the schemes

Using 2 - 2™ EPR pairs

Teleport if
f(0..00,y)=0

Teleport if
f(0..01,y)=0

Teleport if

flx,y) =0

Teleport if
f(1..11,5) =0



Attacks

* Exponentially many qubits, not feasible

* Breaking might be much easier for some
functions f(x,y)

* We would like a function f (x, y) that is easily
computable for the Prover, but gives a scheme

that is hard to break



The Garden-Hose Model b

Alice and Bob share s pipes between them. fxy)




The Garden-Hose Model b

en them. f(x,y)

Alice and Bob share s pipes be

y €{0,1}"




The Garden-Hose Model

They connect the pipes with pieces of hose. f(x,y)
Alice also has a water tap she connects.
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x € {0,1}"




The Garden-Hose Model

They connect the pipes with pieces of hose. f(x,y)
Alice also has a water tap she connects.

2

x € {0,1}"




The Garden-Hose Model

They connect the pipes with pieces of hose. f(x,v)
Alice also has a water tap she connects.
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x € {0,1}"




The Garden-Hose Model

They connect the pipes with pieces of hose. f(x,v)
Alice also has a water tap she connects.

2

x € {0,1}"




The Garden-Hose Model h

They connect the pipes with pieces of hose. f(x,v)
Alice also has a water tap she connects.
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x € {0,1}"




The Garden-Hose Model h

They connect the pipes with pieces of hose. f(x,v)
Alice also has a water tap she connects.




The Garden-Hose Model

A strategy in the garden-hose model for a function f
gives an attack on that scheme.
(Number of pipes = number of EPR pairs.)

The garden-hose complexity upper bounds the
entanglement needed to break corresponding scheme

The garden-hose model captures a class of perfect

attacks.
f(x,y)
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Barrington’s Theorem:

Logarithmic depth circuits can be computed by a width-5
permutation branching program of polynomial length.

Instructions: (i, m, T) with m, T € St
Evaluatetomif x; = 1, evaluatetotifx; =0

The branching program is a list of these instructions:
(i, mq,71)(iy, My, T5) (i3, M3, T3) = e if circuit outputs O
Otherwise a 5-cycle




Applying Barrington’s theorem

If f(x,y) has a log-depth circuit, the garden-hose complexity of f
is bounded by a polynomial.

Proof sketch:

Barrington’s theorem gives a polynomially long list of
instructions.

Assume these instructions alternate between depending on x
and y.

Permutation branching program outputs:
The identity permutation when f(x,y) = 0
and a 5-cycle when f(x,y) =1




Applying Barrington’s theorem

For every even instruction k in the permutation branching program

According to my,
with T, the output of
the current instruction

Using 1y, 41

f To the pipe corresponding to (1),
& with 11 the output of the first instruction



Logarithmic space computations

If f(x,y) can be computed in logarithmic space,

then the garden-hose complexity of f is
polynomial.

Corollary: If L = P then every efficiently
computable function’s scheme can be broken
using a polynomial amount of EPR pairs




Other results

Garden-hose lower bounds:
— Linear lower bound for many functions
— There exist functions that need an exponential

number of pipes

 Quantum lower bounds
— For specific functions: logarithmic number of

qubits
— There exist functions that need a linear number of

qubits
_ f(xy)
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Summary

Position-based quantum cryptography might still
be possible when the pre-shared state is bounded

A new model of communication complexity: the
garden-hose model

In the considered schemes:
more classical computation for the Prover 2
Adversaries need a bigger quantum state

The security of these schemes can be linked to
classical complexity theory



Further work

Extend the results to a randomized setting

Parallel repetition theorems
Closing the gap between upper and lower bounds

Find a function in P that needs exponential
entanglement (assuming P # L)
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