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For unbiased bases and qubits: H(X |O,Θ) ≥ 1
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Consider joint state ρAO .

If ρAO = |ψ〉〈ψ| is fully entangled, then H(X |O,Θ) = 0.
(Observer chooses measurement on O — depending on Θ
— to get perfect correlation with X .)

No uncertainty relation here!
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(Conditional) von Neumann entropies have many applications.

In some settings, e.g. in cryptography, other entropies are
more relevant.

We now extend the uncertainty relation to smooth entropies.
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A perfect observer B of a quantum system A is described by a
state |ψ〉〈ψ|AB′ ⊗ σB′′ , where |ψ〉 is fully entangled.

Proximity to a perfect observer:

Fperfect(A|B) = max
B→B′B′′

max
σ

F
(
ρAB′B′′ , |ψ〉〈ψ|AB′ ⊗ σB′′

)
.

Min-Entropy: Hmin(A|B) := − log F 2
perfect(A|B).
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Fignorant(A|B) = max
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)
.

Max-Entropy: Hmax(A|B) := log F 2
ignorant(A|B).
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Smooth Entropies

We optimize entropies over a ball of close states, Bε(ρ).

Smooth Min-Entropy:

Hε
min(A|B)ρ := max

ρ̃∈Bε(ρ)
Hmin(A|B)ρ̃ .

For classical A = X , it characterizes the extractable
independent randomness:

Renner 2005, MT/Schaffner/Smith/Renner 2011

The number of random bits — independent of a (quantum)
memory B — that can be extracted from X is

`extr ≈ Hε
min(X |B) .
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Smooth Entropies

Smooth Max-Entropy:

Hε
max(A|B)ρ := min

ρ̃∈Bε(ρ)
Hmax(A|B)ρ̃ .

For classical A = X , it characterizes the encoding length for
data reconciliation:

Renner/Renes 2010 [arXiv:1008.0452]

The number of bits needed to reconstruct X from a (quantum)
memory B is

`enc ≈ Hε
max(X |B) .
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Quantum mechanics implies uniqueness of perfect observer
due to monogamy of entanglement. Moreover,

Fperfect(A|B) ≤ Fignorant(A|C ) .

In terms of entropies [König/Renner/Schafner, 2008]:

Hmin(A|B) + Hmax(A|C ) ≥ 0 .

And smooth entropies [MT/Colbeck/Renner, 2010]:

Hε
min(A|B) + Hε

max(A|C ) ≥ 0 .
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Main Result

The uncertainty relation for smooth entropies:

MT/Renner 2011

For any state ρAO1O2 , ε ≥ 0 and POVMs {Mx} and {Ny} on A:

Hε
min(X |O1,Θ) + Hε

max(X |O2,Θ) ≥ log2
1

c
,

c = max
x ,y

∥∥√Mx

√
Ny

∥∥2
∞ .

Overlap is c = maxx ,y
∣∣〈x |y〉∣∣2 for projective measurements.

This implies previous results for the von Neumann entropy due
to asymptotic equipartition [MT/Colbeck/Renner, 2009]

1

n
Hε
min/max(An|Bn)

n→∞, ε→0−−−−−−−−→ H(A|B).

Operational quantities =⇒ Applications in cryptography.
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Security Proof Sketch

We consider the entanglement-based Bennett-Brassard 1984
protocol [Bennett/Brassard/Mermin, 1992]

The situation after Bob measured and holds an estimate X̂ of
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b
b

b
b

b

b

b

ρ

Θ ∈ {+,×}

X

uniform

b
b

b
b

b

b

b

Eve

Given Θ, what is X?

Alice X̂ = . . . Bob



Entropic Uncertainty Relations Uncertainty Relation for Smooth Entropies Application to Quantum Key Distribution

Security Proof Sketch

We consider the entanglement-based Bennett-Brassard 1984
protocol [Bennett/Brassard/Mermin, 1992]

The situation after Bob measured and holds an estimate X̂ of
X looks as follows:

b
b

b
b

b

b

b

ρ

Θ ∈ {+,×}

X

uniform

b
b

b
b

b

b

b

Eve

Given Θ, what is X?

Alice X̂ = . . . Bob



Entropic Uncertainty Relations Uncertainty Relation for Smooth Entropies Application to Quantum Key Distribution

Security Proof Sketch

b
b

b
b

b

b

b

ρ

Θ ∈ {+,×}

X

uniform

b
b

b
b

b

b

b

Eve

Given Θ, what is X?
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Overlap: log2
1
c = 1 per bit. (qubits and unbiased bases)

Uncertainty for n bits: Hε
min(X n|E ,Θn) ≥ n − Hε

max(X n|X̂ n).

Secret key:

`sec

≈ Hε
min(X n|E ,Θn)− Hε

max(X n|X̂ n)

≥ n − 2Hε
max(X n|X̂ n) .

Parameter esimation: λ = 1
k |X k ⊕ X̂ k |.

Then, estimate Hε
max(X n|X̂ n) . nh(λ).
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Secret key:

`sec & `extr − `enc
≈ Hε

min(X n|E ,Θn)− Hε
max(X n|X̂ n)

≥ n − 2Hε
max(X n|X̂ n) .

Parameter esimation: λ = 1
k |X k ⊕ X̂ k |.

Then, estimate Hε
max(X n|X̂ n) . nh(λ).
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Secure Key Rate

The extractable ε-secure key per block of size N = n + k is

`ε ≤ n
(
1− h(Qtol + µ)

)
− 3 log(3/ε)− leakEC

µ ≈
√

1/k · ln(1/ε) is the statistical deviation from the
tolerated channel noise, Qtol.

leakEC ≈ nh(Qtol) is the information about the key leaked
during error correction.

The achievable key rate, `/N, deviates from its optimal
asymptotic value, 1− 2h(Q), only by (unavoidable) terms
that are due to finite statistics.
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Finite-Key Conclusion

The improved finite key bounds are due to the simplicity of
the proof via the uncertainty relation.

Tomography of single quantum systems is unnecessary.
Instead, the min-entropy of X n is bounded directly.
Security against general attacks comes for free — no De Finetti
or Post-Selection necessary.

This proof technique can be applied to other problems in
3-party quantum cryptography.

As pointed out by Hayashi/Tsurumaru [arXiv:1107.0589],
the key rates can be improved if we allow a dynamic protocol
that chooses a different ` in each run.
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Recent Work and Outlook

The smooth entropies and uncertainty relation have been
generalized to von Neumann algebras. [Berta/Furrer/Scholz,
arXiv: 1107.5460].

It was shown that the (effective) overlap of two measurements
can be bounded by the CHSH violation that can be achieved
with them. [Hänggi/MT, arXiv: 1108.5349]
This opens new avenues for device-independent cryptography.

Thank you for your attention.
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