Uncertainty Relation for Smooth Entropies

Application to Quantum Key Distribution 00000

The Uncertainty Relation and its Applications in Cryptography

Marco Tomamichel and Renato Renner

Institute for Theoretical Physics, ETH Zurich

partly joint work with Charles Ci Wen Lim and Nicolas Gisin Group of Applied Physics, University of Geneva

[PRL **106**, 110506 (2011)] and [arXiv: 1103.4130] QCrypt, Zürich, September 2011

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
••••	000000	00000
Classical Observers		

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 오 @

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Classical Observers		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution 00000
Classical Observers		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Heisenberg uncertainty principle: Observer cannot predict outcome of both measurements.

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

- Heisenberg uncertainty principle: Observer cannot predict outcome of both measurements.
- For qubits, unbiased bases and ρ eigenstate of '+':

$$H(X|O,\Theta) = \frac{1}{2}H(X|O,\Theta=+) + \frac{1}{2}H(X|O,\Theta=\times) = 0 + \frac{1}{2}.$$

Deutsch, Maassen/Uffink 1988

For unbiased bases and qubits: $H(X|O,\Theta) \ge \frac{1}{2}$.

Deutsch, Maassen/Uffink 1988

For unbiased bases: $H(X|O, \Theta) \ge \frac{1}{2} \log_2 d$.

Deutsch, Maassen/Uffink 1988 $H(X|O,\Theta) \ge \frac{1}{2}\log_2 \frac{1}{c}, \quad c = \max_{x,y} |\langle x|y \rangle|^2,$

where $|x\rangle$ and $|y\rangle$ are eigenvectors of the two measurements.

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution $_{\rm OOOOO}$
Classical Observers		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution 00000
Classical Observers		

Deutsch, Maassen/Uffink 1988 $H(X|O_1,\Theta)+H(X|O_2,\Theta)\geq \log_2rac{1}{c}\,.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Quantum Observers		

Given Θ , what is X?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Consider joint state ρ_{AO} .

- Consider joint state ρ_{AO} .
- If ρ_{AO} = |ψ⟩⟨ψ| is fully entangled, then H(X|O, Θ) = 0. (Observer chooses measurement on O—depending on Θ —to get perfect correlation with X.)

- Consider joint state ρ_{AO} .
- If ρ_{AO} = |ψ⟩⟨ψ| is fully entangled, then H(X|O,Θ) = 0. (Observer chooses measurement on O—depending on Θ —to get perfect correlation with X.)

• No uncertainty relation here!

イロト イ団ト イヨト イヨト 二日

Can monogamy of entanglement help?

Berta et al. 2010, Coles et al. 2011 $H(X|O_1,\Theta) + H(X|O_2,\Theta) \ge \log_2 rac{1}{c}.$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

• (Conditional) von Neumann entropies have many applications.

X

 O_2

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

• (Conditional) von Neumann entropies have many applications.

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

 In some settings, e.g. in cryptography, other entropies are more relevant.

- (Conditional) von Neumann entropies have many applications.
- In some settings, e.g. in cryptography, other entropies are more relevant.
- We now extend the uncertainty relation to smooth entropies.

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies ●00000	Application to Quantum Key Distribution
Min/Max-Entropy		

• A perfect observer *B* of a quantum system *A* is described by a state $|\psi\rangle\langle\psi|_{AB'}\otimes\sigma_{B''}$, where $|\psi\rangle$ is fully entangled.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution 00000
Min/Max-Entropy		

- A perfect observer *B* of a quantum system *A* is described by a state $|\psi\rangle\langle\psi|_{AB'}\otimes\sigma_{B''}$, where $|\psi\rangle$ is fully entangled.
- Proximity to a perfect observer:

$$F_{\mathsf{perfect}}(A|B) = \max_{B \to B'B''} \max_{\sigma} F(\rho_{AB'B''}, |\psi\rangle \langle \psi|_{AB'} \otimes \sigma_{B''}).$$

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies ●00000	Application to Quantum Key Distribution 00000
Min/Max-Entropy		

- A perfect observer *B* of a quantum system *A* is described by a state $|\psi\rangle\langle\psi|_{AB'}\otimes\sigma_{B''}$, where $|\psi\rangle$ is fully entangled.
- Proximity to a perfect observer:

$$F_{\mathsf{perfect}}(A|B) = \max_{B \to B'B''} \max_{\sigma} F(\rho_{AB'B''}, |\psi\rangle \langle \psi|_{AB'} \otimes \sigma_{B''}).$$

• Min-Entropy: $H_{\min}(A|B) := -\log F_{\text{perfect}}^2(A|B)$.

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Min/Max-Entropy		

 An ignorant observer B of a quantum system A is described by a state ω_A ⊗ σ_B, where ω_A is completely mixed.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies ○●○○○○	Application to Quantum Key Distribution
Min/Max-Entropy		

- An ignorant observer B of a quantum system A is described by a state ω_A ⊗ σ_B, where ω_A is completely mixed.
- Proximity to an ignorant observer:

$$F_{\text{ignorant}}(A|B) = \max_{\sigma} F(\rho_{AB}, \omega_A \otimes \sigma_B).$$

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Min/Max-Entropy		

- An ignorant observer B of a quantum system A is described by a state ω_A ⊗ σ_B, where ω_A is completely mixed.
- Proximity to an ignorant observer:

$$F_{\text{ignorant}}(A|B) = \max_{\sigma} F(\rho_{AB}, \omega_A \otimes \sigma_B).$$

• Max-Entropy: $H_{\max}(A|B) := \log F_{\text{ignorant}}^2(A|B)$.

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Smooth Entropies		

• We optimize entropies over a ball of close states, $\mathcal{B}^{\varepsilon}(\rho)$.

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Smooth Entropies		

- We optimize entropies over a ball of close states, $\mathcal{B}^{\varepsilon}(\rho)$.
- Smooth Min-Entropy:

$$H^arepsilon_{\min}(A|B)_
ho := \max_{ ilde
ho\in\mathcal{B}^arepsilon(
ho)} H_{\min}(A|B)_{ ilde
ho}\,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Smooth Entropies		

- We optimize entropies over a ball of close states, $\mathcal{B}^{\varepsilon}(\rho).$
- Smooth Min-Entropy:

$$H^arepsilon_{\min}(A|B)_
ho := \max_{ ilde
ho\in\mathcal{B}^arepsilon(
ho)} H_{\min}(A|B)_{ ilde
ho}\,.$$

• For classical *A* = *X*, it characterizes the extractable independent randomness:

Renner 2005, MT/Schaffner/Smith/Renner 2011

The number of random bits—independent of a (quantum) memory B—that can be extracted from X is

$$\ell_{\mathsf{extr}} \approx H^{\varepsilon}_{\min}(X|B)$$
.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies $\circ \circ \circ \circ \circ \circ \circ$	Application to Quantum Key Distribution
Smooth Entropies		

• Smooth Max-Entropy:

$$H^{arepsilon}_{\max}(A|B)_{
ho} := \min_{ ilde{
ho}\in \mathcal{B}^{arepsilon}(
ho)} H_{\max}(A|B)_{ ilde{
ho}} \,.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies $\circ \circ \circ$	Application to Quantum Key Distribution
Smooth Entropies		

• Smooth Max-Entropy:

$$H^{arepsilon}_{\max}(A|B)_{
ho} := \min_{ ilde{
ho}\in \mathcal{B}^{arepsilon}(
ho)} H_{\max}(A|B)_{ ilde{
ho}} \,.$$

• For classical *A* = *X*, it characterizes the encoding length for data reconciliation:

Renner/Renes 2010 [arXiv:1008.0452]

The number of bits needed to reconstruct X from a (quantum) memory B is

$$\ell_{\mathsf{enc}} pprox H^{arepsilon}_{\mathsf{max}}(X|B)$$
 .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Uncertainty Relation for Smooth Entropies $\circ \circ \circ \circ \bullet \circ$

Application to Quantum Key Distribution

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

$A \underbrace{\begin{array}{c} & & \\ &$

Duality

Duality

Uncertainty Relation for Smooth Entropies $\circ\circ\circ\circ\circ\circ\circ$

Application to Quantum Key Distribution 00000

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Quantum mechanics implies uniqueness of perfect observer due to monogamy of entanglement. Moreover,

 $F_{\text{perfect}}(A|B) \leq F_{\text{ignorant}}(A|C)$.

Duality

Uncertainty Relation for Smooth Entropies $\circ \circ \circ \circ \circ \circ$

Application to Quantum Key Distribution 00000

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Quantum mechanics implies uniqueness of perfect observer due to monogamy of entanglement. Moreover,

 $F_{\text{perfect}}(A|B) \leq F_{\text{ignorant}}(A|C)$.

• In terms of entropies [König/Renner/Schafner, 2008]:

 $H_{\min}(A|B) + H_{\max}(A|C) \ge 0$.

Duality

Uncertainty Relation for Smooth Entropies $\circ \circ \circ \circ \circ \circ$

Application to Quantum Key Distribution 00000

• Quantum mechanics implies uniqueness of perfect observer due to monogamy of entanglement. Moreover,

 $F_{\text{perfect}}(A|B) \leq F_{\text{ignorant}}(A|C)$.

• In terms of entropies [König/Renner/Schafner, 2008]:

$$H_{\min}(A|B) + H_{\max}(A|C) \geq 0$$
.

• And smooth entropies [MT/Colbeck/Renner, 2010]:

$$H^{\varepsilon}_{\min}(A|B) + H^{\varepsilon}_{\max}(A|C) \geq 0$$
.

Uncertainty Relation for Smooth Entropies

Application to Quantum Key Distribution 00000

Main Result

The uncertainty relation for smooth entropies:

MT/Renner 2011

For any state $\rho_{AO_1O_2}$, $\varepsilon \ge 0$ and POVMs $\{M_x\}$ and $\{N_y\}$ on A:

$$egin{aligned} & \mathcal{H}^arepsilon_{\mathsf{min}}(X|O_1,\Theta) + \mathcal{H}^arepsilon_{\mathsf{max}}(X|O_2,\Theta) \geq \log_2rac{1}{c}\,, \ & c = \max_{x,y} ig\|\sqrt{M_x}\sqrt{N_y}ig\|_\infty^2\,. \end{aligned}$$

• Overlap is $c = \max_{x,y} |\langle x|y \rangle|^2$ for projective measurements.

Uncertainty Relation for Smooth Entropies $\circ\circ\circ\circ\circ\bullet$

Application to Quantum Key Distribution

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Main Result

The uncertainty relation for smooth entropies:

MT/Renner 2011

For any state $\rho_{AO_1O_2}$, $\varepsilon \ge 0$ and POVMs $\{M_x\}$ and $\{N_y\}$ on A:

$$egin{aligned} & \mathcal{H}^arepsilon_{\mathsf{min}}(X|O_1,\Theta) + \mathcal{H}^arepsilon_{\mathsf{max}}(X|O_2,\Theta) \geq \log_2rac{1}{c}\,, \ & c = \max_{x,y} ig\|\sqrt{M_x}\sqrt{N_y}ig\|_\infty^2\,. \end{aligned}$$

- Overlap is $c = \max_{x,y} |\langle x|y \rangle|^2$ for projective measurements.
- This implies previous results for the von Neumann entropy due to asymptotic equipartition [MT/Colbeck/Renner, 2009]

$$\frac{1}{n} H^{\varepsilon}_{\min/\max}(A^n | B^n) \xrightarrow{n \to \infty, \varepsilon \to 0} H(A | B)$$

Uncertainty Relation for Smooth Entropies

Application to Quantum Key Distribution

Main Result

The uncertainty relation for smooth entropies:

MT/Renner 2011

For any state $\rho_{AO_1O_2}$, $\varepsilon \ge 0$ and POVMs $\{M_x\}$ and $\{N_y\}$ on A:

$$egin{aligned} & \mathcal{H}^arepsilon_{\mathsf{min}}(X|O_1,\Theta) + \mathcal{H}^arepsilon_{\mathsf{max}}(X|O_2,\Theta) \geq \log_2rac{1}{c}\,, \ & c = \max_{x,y} ig\|\sqrt{M_x}\sqrt{N_y}ig\|_\infty^2\,. \end{aligned}$$

- Overlap is $c = \max_{x,y} |\langle x|y \rangle|^2$ for projective measurements.
- This implies previous results for the von Neumann entropy due to asymptotic equipartition [MT/Colbeck/Renner, 2009]

$$\frac{1}{n}H^{\varepsilon}_{\min/\max}(A^n|B^n) \xrightarrow{n \to \infty, \varepsilon \to 0} H(A|B).$$

• Operational quantities \implies Applications in cryptography.

Security Proof Sketch		
000000	000000	●0000
Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution

• We consider the entanglement-based Bennett-Brassard 1984 protocol [Bennett/Brassard/Mermin, 1992]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Security Proof Sketch		

- We consider the entanglement-based Bennett-Brassard 1984 protocol [Bennett/Brassard/Mermin, 1992]
- The situation after Bob measured and holds an estimate X of X looks as follows:

Entropic Uncertainty Relations Uncertainty Relation for Smooth Entropies Application to Qu 000000 000000 000000 00000

Application to Quantum Key Distribution

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Security Proof Sketch

• Overlap: $\log_2 \frac{1}{c} = 1$ per bit. (qubits and unbiased bases)

Security Proof Sketch

• Overlap: $\log_2 \frac{1}{c} = 1$ per bit. (qubits and unbiased bases)

• Uncertainty for *n* bits: $H_{\min}^{\varepsilon}(X^n|E,\Theta^n) \ge n - H_{\max}^{\varepsilon}(X^n|\hat{X}^n)$.

- 日本 - 4 日本 - 4 日本 - 日本

Application to Quantum Key Distribution $\circ \bullet \circ \circ \circ$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Overlap: $\log_2 \frac{1}{c} = 1$ per bit. (qubits and unbiased bases)
- Uncertainty for *n* bits: $H_{\min}^{\varepsilon}(X^n|E,\Theta^n) \ge n H_{\max}^{\varepsilon}(X^n|\hat{X}^n).$
- Secret key:

$$\ell_{\rm sec} \gtrsim \ell_{\rm extr} - \ell_{\rm enc}$$

Application to Quantum Key Distribution $\circ \bullet \circ \circ \circ$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Overlap: $\log_2 \frac{1}{c} = 1$ per bit. (qubits and unbiased bases)
- Uncertainty for *n* bits: $H_{\min}^{\varepsilon}(X^n|E,\Theta^n) \ge n H_{\max}^{\varepsilon}(X^n|\hat{X}^n).$
- Secret key:

$$egin{aligned} \ell_{\mathsf{sec}} \gtrsim \ell_{\mathsf{extr}} - \ell_{\mathsf{enc}} \ pprox & \mathcal{H}^arepsilon_{\mathsf{min}}(X^n | E, \Theta^n) - \mathcal{H}^arepsilon_{\mathsf{max}}(X^n | \hat{X}^n) \end{aligned}$$

Application to Quantum Key Distribution $\circ \bullet \circ \circ \circ$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Overlap: $\log_2 \frac{1}{c} = 1$ per bit. (qubits and unbiased bases)
- Uncertainty for *n* bits: $H_{\min}^{\varepsilon}(X^n|E,\Theta^n) \ge n H_{\max}^{\varepsilon}(X^n|\hat{X}^n).$
- Secret key:

$$\ell_{
m sec} \gtrsim \ell_{
m extr} - \ell_{
m enc} \ pprox H_{
m min}^{arepsilon}(X^n|E,\Theta^n) - H_{
m max}^{arepsilon}(X^n|\hat{X}^n) \ \ge n - 2H_{
m max}^{arepsilon}(X^n|\hat{X}^n) \,.$$

Application to Quantum Key Distribution

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Security Proof Sketch

- Overlap: $\log_2 \frac{1}{c} = 1$ per bit. (qubits and unbiased bases)
- Uncertainty for *n* bits: $H_{\min}^{\varepsilon}(X^n|E,\Theta^n) \ge n H_{\max}^{\varepsilon}(X^n|\hat{X}^n).$
- Secret key:

$$\ell_{\mathsf{sec}} \gtrsim n - 2H_{\mathsf{max}}^{arepsilon}(X^n|\hat{X}^n)$$

• Parameter esimation: $\lambda = \frac{1}{k} | X^k \oplus \hat{X}^k |$.

Application to Quantum Key Distribution $\circ \bullet \circ \circ \circ$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Overlap: $\log_2 \frac{1}{c} = 1$ per bit. (qubits and unbiased bases)
- Uncertainty for *n* bits: $H_{\min}^{\varepsilon}(X^n|E,\Theta^n) \ge n H_{\max}^{\varepsilon}(X^n|\hat{X}^n)$.
- Secret key:

$$\ell_{\mathsf{sec}} \gtrsim n - 2H_{\mathsf{max}}^{\varepsilon}(X^n|\hat{X}^n)$$

- Parameter esimation: $\lambda = \frac{1}{k} | X^k \oplus \hat{X}^k |$.
- Then, estimate $H^{arepsilon}_{\max}(X^n|\hat{X}^n) \lesssim nh(\lambda).$

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Secure Key Rate		

The extractable ϵ -secure key per block of size N = n + k is

$$\ell^{\epsilon} \leq n(1 - h(Q_{\text{tol}} + \mu)) - 3\log(3/\epsilon) - \text{leak}_{\text{EC}}$$

- $\mu \approx \sqrt{1/k \cdot \ln(1/\epsilon)}$ is the statistical deviation from the tolerated channel noise, Q_{tol} .
- leak_{EC} ≈ nh(Q_{tol}) is the information about the key leaked during error correction.
- The achievable key rate, ℓ/N , deviates from its optimal asymptotic value, 1 2h(Q), only by (unavoidable) terms that are due to finite statistics.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Finite-Key Conclusion		

- The improved finite key bounds are due to the simplicity of the proof via the uncertainty relation.
 - Tomography of single quantum systems is unnecessary. Instead, the min-entropy of Xⁿ is bounded directly.
 - Security against general attacks comes for free no De Finetti or Post-Selection necessary.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- This proof technique can be applied to other problems in 3-party quantum cryptography.
- As pointed out by Hayashi/Tsurumaru [arXiv:1107.0589], the key rates can be improved if we allow a dynamic protocol that chooses a different ℓ in each run.

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Recent Work and Outlook		

- The smooth entropies and uncertainty relation have been generalized to von Neumann algebras. [Berta/Furrer/Scholz, arXiv: 1107.5460].
- It was shown that the (effective) overlap of two measurements can be bounded by the CHSH violation that can be achieved with them. [Hänggi/MT, arXiv: 1108.5349] This opens new avenues for device-independent cryptography.

Entropic Uncertainty Relations	Uncertainty Relation for Smooth Entropies	Application to Quantum Key Distribution
Recent Work and Outlook		

- The smooth entropies and uncertainty relation have been generalized to von Neumann algebras. [Berta/Furrer/Scholz, arXiv: 1107.5460].
- It was shown that the (effective) overlap of two measurements can be bounded by the CHSH violation that can be achieved with them. [Hänggi/MT, arXiv: 1108.5349] This opens new avenues for device-independent cryptography.

Thank you for your attention.