Outline	Quantum Cryptography 000 00	The Noisy Storage Model	Results and applications	Conclusion and Open Question
(G	Centre for Ouantum Technologies		NUS National University of Singapore
	Δ.			

A min entropy uncertainty relation for finite size cryptography

Nelly Ng Huei Ying

Centre for Quantum Technologies, Singapore

September 13, 2012

Joint work with: Mario Berta (ETH, Zurich), Stephanie Wehner (CQT, Singapore)

Articles: quant-ph/1205.0842, accepted by PRA

Nelly Ng Huei Ying

A min entropy uncertainty relation for finite size cryptography

 < □</td>
 < □</td>
 < □</td>
 < □</td>
 < ○</td>
 <</td>

 Centre for Quantum Technologies, Singapore

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions
	000 00		00000 0	

Table of Contents

Quantum Cryptography Cryptographic challenges Assumptions in security

The Noisy Storage Model Entropic Uncertainty relations

Results and applications

A new bound for min-entropy Practical implementation of Bit Commitment

Conclusion and Open Questions

Nelly Ng Huei Ying

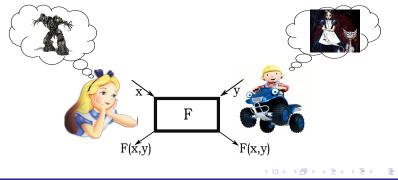
A min entropy uncertainty relationfor finite size cryptography

Centre for Quantum Technologies, Singapore

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions
	000			
	00			
Cryptographi	c challenges			

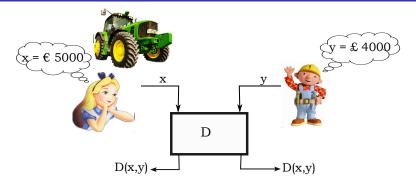
The Cryptography World

- Protection of information in a communication process.
- Conventional cryptography: protection against eavesdropping Eve.
- Main example: Key establishment
- QKD: information theoretic security based on quantum physics!



-

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions
	000 00		00000 0	
Cryptograph	ic challenges			


More challenges: two-party protocols

- Secure function evaluation, involving two distrustful parties.
- No Eve!!
- Security requirements: If one party is honest, the other possible cheating party cannot gain further information than provided by the outcome.

Outline	Quantum Cryptography ○○● ○○	The Noisy Storage Model	Results and applications	Conclusion and Open Questions
Cryntogranh	ic challenges			

Example: Selling a tractor

D(x, y) = no if x > y (Bob's offered price below Alice's asking price) y if $x \le y$ (Sold at offered price, at least or higher than Alice's asking price)

Other examples: bit commitment, 1-2 oblivious transfer etc.

< □ > < □ > < □ > < □ > < □ >
 Centre for Quantum Technologies, Singapore

Outline	Quantum Cryptography ○○○ ●○	The Noisy Storage Model	Results and applications 00000 0	Conclusion and Open Questions
Assumptions i	n security			

Are such fundamental 2-party protocols achievable by quantum cryptography?

- Quantum bit commitment is impossible
 - H.K. Lo, H. F. Chau (quant-ph/9605026)
 D. Mayers (guant-ph/9605044)
- One-sided two-party computations are impossible
 - ► H.K.Lo (quant-ph/9611031)
- Extension of impossibility proofs for bit commitment
 - G.M.D'Ariano, D. Kretschmann, D. Schlingemann, R.F.Werner (quant-ph/0605224)

Is this the end??

Outline	Quantum Cryptography ○○○ ○●	The Noisy Storage Model	Results and applications 00000 0	Conclusion and Open Questions
Assumptions i	n security			

Quantum assumptions

- General limitations
 - Attacker cannot act on multiple qubits simultaneously (Salvail, http://www.cki.au.dk/pub/crypt.dvi)
 - Relativistic theory (Kent, quant-ph/1101.4620)
- Resource limitations
 - Bounded quantum storage (Damgaard, Fehr, Salvail, Schaffner, quant-ph/0508222)

A min entropy uncertainty relationfor finite size cryptography

Outline Q	uantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions

The Noisy Storage Model

★ 문 ► ★ 문 ► Centre for Quantum Technologies, Singapore

3

Nelly Ng Huei Ying

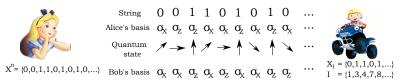
Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions
	000 00		00000 0	

Noisy Storage Model

- Quantum memory is in general bounded and subjected to noise.¹ (Wehner, Schaffner, Terhal, quant-ph/0711.2895)
- Quantum Protocol: Weak String Erasure
 - Provides Alice a random binary (classical) string Xⁿ, and Bob a random substring X_I with the set of location indices I.

Alice Bob
$$x^n \leftarrow WSE \longrightarrow X_I, I$$

 $^{-1}$ Not in contradiction with memories used for quantum repeaters. \rightarrow \leftarrow \bigcirc \rightarrow \leftarrow \bigcirc \rightarrow \leftarrow \bigcirc \rightarrow \bigcirc \bigcirc \rightarrow \rightarrow

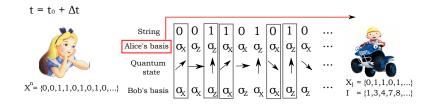

Centre for Quantum Technologies, Singapore

A min entropy uncertainty relationfor finite size cryptography

Outline	Quantum Cryptography 000 00	The Noisy Storage Model	Results and applications 00000 0	Conclusion and Open Questions

$(n, \overline{\lambda}, \epsilon)$ -WSE

 $t = t_0$



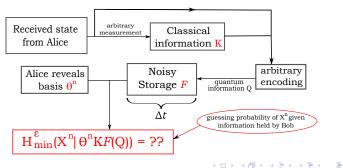
- Security for Alice: Bob's knowledge of X^n is limited, i.e. $| H^{\epsilon}_{\min}(X^n | B) \ge \lambda n$.

- Security for Bob: Alice does not learn about \mathcal{I} .
- WSE protocol + classical information post-processing \rightarrow fundamental secure 2-party protocols! (OT, BC etc)

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions
	000 00		00000 0	

$(n, \overline{\lambda}, \epsilon)$ -WSE

Security for Alice: Bob's knowledge of X^n is limited, i.e. $| H_{\min}^{\epsilon}(X^n | B) \ge \lambda n$.


Security for Bob: Alice does not learn about \mathcal{I} .

• WSE protocol + classical information post-processing \rightarrow fundamental secure 2-party protocols! (OT, BC etc)

Outline	Quantum Cryptography	The Noisy Storage Model ●○	Results and applications	Conclusion and Open Questions
Entropic Un	certainty relations			

The Shield: Entropic Uncertainty Relations

- Fundamental principle: Description of the inherent randomness coming from the uncertainty in outcomes for non-commuting measurements.
- Importance: Bounds the amount of information that a possible adversary has access to.
- Quantities of interest:

Outline	Quantum Cryptography	The Noisy Storage Model ○●	Results and applications	Conclusion and Open Questions
Entropic Unc	certainty relations			

Main Challenges

Goal: making min-entropy per bit large!

- more tolerance against losses and errors in implementations
 - Tight/optimal bounds for quantum side information
 - Previously linked to channel capacities:
 - Classical capacity (quant-ph/0906.1030)
 - Entanglement cost (quant-ph/1108.5357)
 - WSE using six-states instead of BB84 can be linked to quantum capacity(quant-ph/1111.2026)

Finite size effects

Tight bounds for in QKD (Tomamichel, Lim, Gisin, Renner/arXiv:1103.4130)

Approach:

Derive uncertainty relations w.r.t. classical information first, then include conditioning on quantum information by considering classical capacity of quantum channels obeying strong converse (better understood)

イロト イ押ト イヨト イヨト

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions
	00			

Quantum Cryptography

Cryptographic challenges Assumptions in security

The Noisy Storage Model Entropic Uncertainty relations

Results and applications

A new bound for min-entropy Practical implementation of Bit Commitment

Conclusion and Open Questions

□ ▶ 《 @ ▶ 《 E ▶ 《 E ▶ E 少 Q (Centre for Quantum Technologies, Singapore

Nelly Ng Huei Ying

Outline	Quantum Cryptography 000 00	The Noisy Storage Model	Results and applications ●○○○○ ○	Conclusion and Open Questions
A new boun	d for min-entropy			

How much uncertainty can we obtain?

Scenario:

Consider an arbitrary *n* qubit state ρ , where Bob holds arbitrary classical information K about the state. An honest Alice performs random BB84 measurements upon the state, obtaining a string of outcomes $X^n \in \{0, 1\}^n$. What is the min-entropy of Bob's total information about X^n ?

Close to Shannon entropy! (Damgaard, Fehr, Renner, Salvail, Schaffner, quant-ph/0612014)

$$\mathrm{H}^{\epsilon}_{\min}(X^{n}|\Theta^{n}\mathcal{K}) \geq \left(rac{1}{2} - \delta
ight) n, \qquad ext{where } \epsilon = \exp\left[-rac{\delta^{2}n}{128(2+\lograc{2}{\delta})^{2}}
ight]$$

• Error parameter ϵ can be reasonably small in the large *n* limit.

▶ How large should *n* be? Ans: For small $\epsilon \approx 0.1$ and $\delta \approx 0.01$, $n \ge 10^8$!

★ E ► ★ E ►

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications ○●○○○ ○	Conclusion and Open Questions
A new bound	l for min-entropy			

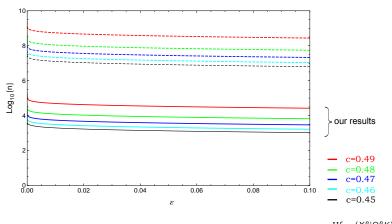
Our results:

- Crucial idea: Bounding the min-entropy by a class of conditional Renyi entropies, and maximizing over all obtained bounds.
- ▶ How large should *n* be? Ans: For $\epsilon \approx 0.1$, $\delta \approx 0.01$, $n \gtrsim 10^4$ is sufficient!
- Similarly tight results obtained for six-state measurements.

Outline	Quantum Cryptography 000 00	The Noisy Storage Model	Results and applications ○○●○○ ○	Conclusion and Open Questions
A new boun	nd for min-entropy			
St	teps in proof: (a ro	ough sketch)		
	H _α (X Θ)	conditional α-F ► Reformulation ► Invoking the	imization over all st Renyi entropies, for a on in terms of spherical c Bloch sphere condition a gle-qubit density matrix.	a single qubit. oordinates.
	$H_{\alpha}(X^{n} \Theta^{n})$	2. Generalization	to an arbitrary <i>n</i> -qu	bit state $ ho$.
	$\begin{array}{ccc} H_{\alpha}\left(X^{n} \mid \Theta^{n}\right) & 2. & \text{Generalization to an arbitrary } n\text{-qubit state } \rho \\ & & \downarrow \\ H_{\alpha}\left(X^{n} \mid \Theta^{n} K\right) & 3. & \text{Further conditioning on classical information} \end{array}$			formation K.
			th $H_{lpha}(X^n \Theta^n)_ ho$, due to dependent from each oth	

 $H^{\varepsilon}_{\min}(X^{n} | \Theta^{n}K)$ 4. Link to min-entropy.

Tomamichel, Colbeck, Renner/arXiv:0811.1221


Let F be a quantum channel satisfying strong converse. Then

$$\mathsf{H}^{\varepsilon}_{\scriptscriptstyle{\mathsf{min}}}(\mathsf{X}^{n}|\Theta^{n}\mathsf{KF}(\mathsf{Q})) \geq -\log P^{\scriptscriptstyle{\mathsf{F}}}_{\scriptscriptstyle{\mathsf{succ}}}[\ \mathsf{H}^{\varepsilon/2}_{\scriptscriptstyle{\mathsf{min}}}(\mathsf{X}^{n}|\Theta^{n}\mathsf{K}) - \log \ (2/\varepsilon) \]$$

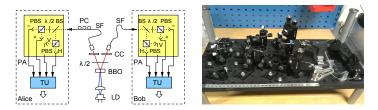
Nelly Ng Huei Ying

extension to guantum side information

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications ○○○●○ ○	Conclusion and Open Questions	
A new bound for min-entropy					

 $\mathsf{c} = \frac{\mathrm{H}_{\min}^{\epsilon}(X^{n}|\Theta^{n}K)}{n}$

Nelly Ng Huei Ying


Application: Bit Commitment in Noisy Storage Model

Ng, Joshi, Chia, Kurtseifer, Wehner/arXiv:1205.3331

- For security, we need $H_{min}^{\epsilon}(X^n|B) \gtrsim 0.47n$.
- Reasons: 1) Making protocol robust against QBER = 4.1%.

2) Minimal classical information processing while considering finite size effects.

• Perform bit commitment by sending 2.5×10^5 qubits during WSEE².

²Modified version of WSE to include robustness against losses and errors \rightarrow $\langle \Xi \rangle \rightarrow$ $\langle \Xi \rangle \rightarrow$ $\langle \Xi \rangle \rightarrow$

Centre for Quantum Technologies, Singapore

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions

Conclusion

- New uncertainty relation provides improved bounds, substantially decreasing the amount of information post-processing required.
- For n = 2.5 × 10⁵, ε = 2 × 10⁻⁵, we performed secure bit commitment under a quantum storage assumption of 972 qubits undergoing low depolarizing noise of r=0.9 (or 928 qubits stored in noiseless memory).

Comments and Open problems

- Demonstrates feasibility of fundamental two-party protocols in NSM.
 - Motivates more construction of useful protocols using WSE, for ex: secure identification.
- Tight relations for quantum side information
 - To prove security of WSE for a larger range of quantum channels.

 < □</td>
 < □</td>
 < □</td>
 < □</td>
 < ○</td>
 <</td>

 Centre for Quantum Technologies, Singapore

A min entropy uncertainty relationfor finite size cryptography

Outline	Quantum Cryptography	The Noisy Storage Model	Results and applications	Conclusion and Open Questions

The End Thank you!

Centre for Quantum Technologies, Singapore

3

イロト 不得下 イヨト イヨト

A min entropy uncertainty relationfor finite size cryptography