Complete Insecurity of Quantum Protocols for Classical Two-Party Computation

Harry Buhrman (CWI, University of Amsterdam) Matthias Christandl (ETH Zurich) Christian Schaffner (University of Amsterdam, CWI)

QCRYPT 2012, Thursday, 13th September (arxiv, to appear in PRL)

CWI

Motivation

Ideally: Alice & Bob have a box computing f on private inputs x and y

e.g.: millionaires' problem: ≤

f

reality: Alice and Bob perform a protocol

X f(x,y)

quantum communication

 $\rightarrow f(x,y)$

Motivation

Ideally: Alice & Bob have a box computing f on private inputs x and y

e.g.: millionaires' problem: ≤

 $\rightarrow f(x,y)$

f(x,y)

reality: dishonest Bob might deviate from protocol to learn more about Alice's input x

f(x,y)

f(x,y)

quantum communication

Secure Function Evaluation

Ideally: Alice & Bob have a box computing f on private inputs x and y

goal: come up with protocols that are

correct

secure against dishonest Alice

secure against dishonest Bob

Main Impossibility Result

Theorem: If a quantum protocol for the evaluation of f is correct and perfectly secure against Bob, then Alice can completely break the protocol.

after protocol: dishonest Alice can compute f(x,y) not just for one x, but for all x.

Theorem: If a quantum protocol for the evaluation of f is ε-correct and ε-secure against Bob, then Alice can break the protocol with probability 1-O(ε).

History

~1970: Conjugate Coding [Wiesner]
1984: Quantum Key Distribution [Bennett Brassard]
~1991: Bit Commitment and Oblivious Transfer?
1997: No Bit Commitment [Lo Chau, Mayers]
1997: No One-Sided Secure Computation [Lo]

Really no Quantum Bit Commitment?

- 2007: No BC [D'Ariano Kretschmann Schlingemann Werner]
- 2007: Some Functions are Impossible [Colbeck]
- 2009: Secure Computation has to Leak Information [Salvail Sotakova Schaffner]
- this work: Complete Insecurity of Two-Sided Deterministic Computations

Talk Outline

explain Lo's impossibility proof
 problem with two-sided computation
 security definition
 impossibility proof
 conclusion

[Lo97] Impossibility Result

Theorem: If a quantum protocol for the evaluation of f is correct and perfectly secure against Bob, then Alice can completely break the protocol.

dishonest Alice can compute f(x,y)not just for one x, but for all x.

X

f(x,y)

holds only for one-sided computations
error increases with number of inputs

- f(x,y) $|\psi^{x,y}\rangle_{AB}$
- only Alice gets output
- wlog measurements are moved to the end, final state is pure
 for dishonest Bob inputting y in superposition, define:

$$\psi^{x_0}\rangle_{AB} = \sum_{y} |\psi^{x_0,y}\rangle_{AB_1} |y\rangle_{B_2}$$

Security against dishonest Bob: $\operatorname{tr}_A(|\psi^{x_0}\rangle\!\langle\psi^{x_0}|_{AB}) = \rho_B^{x_0} = \rho_B^{x_1} = \operatorname{tr}_A(|\psi^{x_1}\rangle\!\langle\psi^{x_1}|_{AB})$

 $f(x_0,y)(x,y), \dots \quad |\psi^{x,y}\rangle_{AB}$ security against dishonest Bob: $\operatorname{tr}_{A}(|\psi^{x_{0}}\rangle\langle\psi^{x_{0}}|_{AB}) = \rho_{B}^{x_{0}} = \rho_{B}^{x_{1}} = \operatorname{tr}_{A}(|\psi^{x_{1}}\rangle\langle\psi^{x_{1}}|_{AB})$ implies existence of cheating unitary for Alice: (not dep on y) $(\overline{U}_A \otimes \overline{\mathbb{I}}_B) |\psi^{x_0}\rangle_{AB} = |\psi^{x_1}\rangle_{AB}$ If dishonest Alice starts with input x_0 , can read out $f(x_0,y)$, switches to x_1 , reads out $f(x_1,y)$ etc.

 $\left(U_{A} \otimes \mathbb{I}_{B}\right) \left|\psi^{x_{0}, y}\right\rangle_{AB} = \left|\psi^{x_{1}, y}\right\rangle_{AB}$

Two-Sided Comp? Bob& f(x,y)f(x,y)Only Alice gets output wlog measurements are moved to the end, final state is pure for dishonest Bob inputting y in superposition, define: $\left|\psi^{x_{0}}\right\rangle_{AB} = \sum \left|\psi^{x_{0},y}\right\rangle_{AB_{1}}\left|y\right\rangle_{B_{2}}$ ${old o}$ security against dishonest Bob: y $\operatorname{tr}_{A}(|\psi^{x_{0}}\rangle\langle\psi^{x_{0}}|_{AB}) = \rho_{B}^{x_{0}} = \rho_{B}^{x_{1}} = \operatorname{tr}_{A}(|\psi^{x_{1}}\rangle\langle\psi^{x_{1}}|_{AB})$ Implies existence of cheating unit v for Alice: (not dep on v) $\left(oldsymbol{U}_{A}\otimes \mathbb{I}_{B}
ight) \left| \psi^{x_{0}}
ight
angle_{AB} = egin{array}{c} ext{trouble starts here...} \end{array}$ \oslash dishonest Alice starts with input x₀, can read out f(x₀,y), switches to x_1 , reads out $f(x_1,y)$ etc. $\left(\overline{U}_{A}\otimes\mathbb{I}_{B}\right)\left|\psi^{x_{0},y}
ight
angle_{AB}=\left|\psi^{x_{1},y}
ight
angle_{AB}$

Security Against Players With Output

 $|\psi^{x,y}\rangle_{AB}$

f(x,y)

f(x,y)

security against dishonest Bob without output: tr_A(|ψ^{x₀}⟩⟨ψ^{x₀}|_{AB}) = ρ^{x₀}_B = ρ^{x₁}_B = tr_A(|ψ^{x₁}⟩⟨ψ^{x₁}|_{AB})
but given f(x,y) ??? (e.g. in the millionaire's problem)
precise formalisation of intuitive notion of "not learning more than f(x,y)" is non-trivial

use the real/ideal paradigm

Security Definition

we want: Alice & Bob interact with the ideal functionality

we have: Alice & Bob interact in a quantum protocol

security holds if REAL looks like IDEAL to the outside world

security holds if REAL looks like IDEAL to the outside world

protocol is secure against dishonest Bob if

- for every input distribution P(x,y) and $\rho_{XY} = \sum \sqrt{P(x,y)} |x\rangle_A |y\rangle_B$
- \odot for every dishonest Bob B in the real world, x,y
- there exists a dishonest Bob B in the ideal world
- \circ such that $\operatorname{REAL}(\rho_{XY}) = \operatorname{IDEAL}(\rho_{XY})$

Security against Bob => Insecurity against Alice

security holds if **REAL** looks like **IDEAL** to the outside world

 tr_{A_p}

 $|\psi\rangle_{A_pABB_p}$

state after the real protocol if both parties play "honestly" but purify their actions

 $\rho_{ABB_{p}} = \sigma_{ABB_{p}} = \operatorname{tr}_{Y}(\sigma_{ABB_{p}Y})$ $\downarrow \text{purification}$ $|\phi\rangle_{ABB_{p}YP}$

• by Uhlmann's theorem: there exists a cheating unitary U such that $U_{A_p \to YP} |\psi\rangle_{A_p ABB_p} = |\phi\rangle_{ABB_p YP}$

Alice's Cheating Strategy

 plays honest but purified strategy
 she applies the cheating unitary U
 measures register Y to obtain y.
 due to correctness, we can show that for all x: f(x,y) = f(x,y).

 $\overline{U_{A_p \to YP}} | \overline{\psi} \rangle_{A_p ABB_p} = | \phi \rangle_{ABB_p YP}$

our results also hold for ε-correctness and ε-security
 $||REAL - IDEAL||_{\diamond} \le ε$

Alice gets a value y' with distribution Q(y'|y) such that
 for all x: Pry [f(x,y)=f(x,y')] ≥ 1-O(ε) ,

In contrast to Lo's proof where the overall error increases linearly with the number of inputs.

In the original of the orig

Conclusion & Open Problems

completes our understanding of why nature does not allow to do two-party secure computation.

@ devil lies in details

is such a strong security definition necessary for impossibility proof? can it be done with a weaker definition?

or randomized functions?

Thank you!