Complete Insecurity

of Quantum Protocols for

Classical Two-Party Computation

 Harry Buhrman (CWI, University of Amsterdam) Matthias Christandl (ETH Zurich) (University of Amsterdam, CWI)

CWI

QCRYPT 2012, Thursday, 13th September
(arxiv, to appear in PRL)

Motivation

- ideally: Alice \& Bob have a box computing f on private inputs x and y

e.g.: millionaires' problem: \leq
- reality: Alice and Bob perform a protocol

Motivation

- ideally: Alice \& Bob have a box computing f on private inputs x and y

- reality: dishonest Bob might deviate from protocol to learn more about Alice's input x

Secure Function Evaluation

- ideally: Alice \& Bob have a box computing f on private inputs x and y

f

- goal: come up with protocols that are
- correct
- secure against dishonest Alice
- secure against dishonest Bob

Main Impossibility Result

- Theorem: If a quantum protocol for the evaluation of f is correct and perfectly secure against Bob, then Alice can the protocol.

$f(x, y)$

$f(x, y)$
after protocol: dishonest Alice can compute $f(x, y)$ not just for one x, but for all x.
- Theorem: If a quantum protocol for the evaluation of f is ε-correct and ε-secure against Bob, then Alice can break the protocol with probability $1-O(\varepsilon)$.

History

- ~1970: Conjugate Coding [Wiesner]
- 1984: Quantum Key Distribution [Bennett Brassard]
- ~1991: Bit Commitment and Oblivious Transfer?
- 1997: No Bit Commitment [Lo Chau, Mayers]
- 1997: No One-Sided Secure Computation [Lo]
- Really no Quantum Bit Commitment?
- 2007: No BC [D’Ariano Kretschmann Schlingemann Werner]
- 2007: Some Functions are Impossible [Colbeck]
- 2009: Secure Computation has to Leak Information [Salvail Sotakova Schaffner]
- this work: Complete Insecurity of Two-Sided Deterministic Computations

Talk Outline

- explain Lós impossibility proof
- problem with two-sided computation
- security definition
- impossibility proof
- conclusion

[Lo97] Impossibility Result

- Theorem: If a quantum protocol for the evaluation of f is correct and perfectly secure against Bob, then Alice can the protocol.

$f(x, y)$
dishonest Alice can compute $f(x, y)$ not just for one x, but for all x.
- holds only for one-sided computations
- error increases with number of inputs

[Lo97] Impossibility Result

$f(x, y)$
$\left|\psi^{x, y}\right\rangle_{A B}$

- only Alice gets output
- wlog measurements are moved to the end, final state is pure - for dishonest Bob inputting y in superposition, define:

$$
\left|\psi^{x_{0}}\right\rangle_{A B}=\sum_{y}\left|\psi^{x_{0}, y}\right\rangle_{A B_{1}}|y\rangle_{B_{2}}
$$

- security against dishonest Bob:

$$
\operatorname{tr}_{A}\left(\left|\psi^{x_{0}}\right\rangle\left\langle\left.\psi^{x_{0}}\right|_{A B}\right)=\rho_{B}^{x_{0}}=\rho_{B}^{x_{1}}=\operatorname{tr}_{A}\left(\left|\psi^{x_{1}}\right\rangle\left\langle\left.\psi^{x_{1}}\right|_{A B}\right)\right.\right.
$$

[Lo97] Impossibility Result

$$
f(x, y)
$$

$$
\left|\psi^{x, y}\right\rangle_{A B}
$$

- security against dishonest Bob:

$$
\operatorname{tr}_{A}\left(\left|\psi^{x_{0}}\right\rangle\left\langle\left.\psi^{x_{0}}\right|_{A B}\right)=\rho_{B}^{x_{0}}=\rho_{B}^{x_{1}}=\operatorname{tr}_{A}\left(\left|\psi^{x_{1}}\right\rangle\left\langle\left.\psi^{x_{1}}\right|_{A B}\right)\right.\right.
$$

- implies existence of
: (not dep on y)

$$
\left(U_{A} \otimes \mathbb{I}_{B}\right)\left|\psi^{x_{0}}\right\rangle_{A B}=\left|\psi^{x_{1}}\right\rangle_{A B}
$$

- dishonest Alice starts with input x_{0}, can read out $f\left(x_{0}, y\right)$, switches to x_{1}, reads out $f\left(x_{1}, y\right)$ etc.

$$
\left(U_{A} \otimes \mathbb{I}_{B}\right)\left|\psi^{x_{0}, y}\right\rangle_{A B}=\left|\psi^{x_{1}, y}\right\rangle_{A B}
$$

Two-Sided Comp?

Bob \&

- onty Alice gets output
- wlog measurements are moved to the end, final state is pure
- for inputting y in superposition, define:

$$
\left|\psi^{x_{0}}\right\rangle_{A B}=\sum\left|\psi^{x_{0}, y}\right\rangle_{A B_{1}}|y\rangle_{B_{2}}
$$

- security against dishonest Bob:

$$
\operatorname{tr}_{A}\left(\left|\psi^{x_{0}}\right\rangle\left\langle\left.\psi^{x_{0}}\right|_{A B}\right)=\rho_{B}^{x_{0}}=\rho_{B}^{x_{1}}=\operatorname{tr}_{A}\left(\left|\psi^{x_{1}}\right\rangle\left\langle\left.\psi^{x_{1}}\right|_{A B}\right)\right.\right.
$$

- implies existence of

$$
\left(U_{A} \otimes \mathbb{I}_{B}\right)\left|\psi^{x_{0}}\right\rangle_{A B}=\text { trouble starts here... }
$$

- dishonest Alice starts with input x_{0}, can read out $f\left(x_{0}, y\right)$, switches to x_{1}, reads out $f\left(x_{1}, y\right)$ etc.

$$
\left(U_{A} \otimes \mathbb{I}_{B}\right)\left|\psi^{x_{0}, y}\right\rangle_{A B}=\left|\psi^{x_{1}, y}\right\rangle_{A B}
$$

Security Against Players With Output

$$
f(x, y) \quad\left|\psi^{x, y}\right\rangle_{A B}
$$

- security against dishonest Bob without output:

$$
\operatorname{tr}_{A}\left(\left|\psi^{x_{0}}\right\rangle\left\langle\left.\psi^{x_{0}}\right|_{A B}\right)=\rho_{B}^{x_{0}}=\rho_{B}^{x_{1}}=\operatorname{tr}_{A}\left(\left|\psi^{x_{1}}\right\rangle\left\langle\left.\psi^{x_{1}}\right|_{A B}\right)\right.\right.
$$

- but given $f(x, y)$??? (e.g. in the millionaire's problem)
- precise formalisation of intuitive notion of
"not learning more than $f(x, y)$ " is non-trivial

use the real/ideal paradigm

Security Definition

- we want: Alice \& Bob interact with the ideal functionality

- we
: Alice \& Bob interact in a quantum protocol

security holds if looks like IDEAL to the outside world

More Formal Security Definition

- protocol is secure against dishonest Bob if
- for every input distribution $\mathrm{P}(\mathrm{x}, \mathrm{y})$ and $\rho_{X Y}=\sum \sqrt{P(x, y)}|x\rangle_{A}|y\rangle_{B}$
- for every dishonest Bob B in the real world, x, y
- there exists a dishonest $B o b B$ in the ideal world
- such that REAL $\left(\rho_{X Y}\right)=\operatorname{IDEAL}\left(\rho_{X Y}\right.$

Security against Bob => Insecurity against Alice

 security holds if REAL looks like IDEAL to the outside world
state after the real protocol if both parties play "honestly" but purify their actions

$$
=\sigma_{A B B_{p}}=\operatorname{tr}_{Y}\left(\sigma_{A B B_{p} Y}\right)
$$

\downarrow purification
$\mid \phi)_{A B B_{p} Y P}$

Security against Bob => Insecurity against Alice

 security holds if REAL looks like IDEAL to the outside world

- by Uhlmann's theorem: there exists a cheating unitary U such that $U_{A_{p} \rightarrow Y P}|\psi\rangle_{A_{p} A B B_{p}}=|\phi\rangle_{A B B_{p} Y P}$

Alice's Cheating Strategy

$|\phi\rangle_{A B B_{p} Y P}$

1. plays honest but purified strategy
2. she applies the
3. measures register Y to obtain y.
4. due to correctness, we can show that for all $x: f(x, y)=f(x, y)$.

$$
U_{A_{p} \rightarrow Y P}|\psi\rangle_{A_{p} A B B_{p}}=|\phi\rangle_{A B B_{p} Y P}
$$

Error Case

- our results also hold for ε-correctness and

$$
\|\quad-\mathrm{IDEAL}\|_{\diamond} \leq \varepsilon
$$

- Alice gets a value y^{\prime} with distribution $Q(y / y)$ such that for all x : $\operatorname{Pr}\left[f(x, y)=f\left(x, y^{\prime}\right)\right] \geq 1-O(\varepsilon)$,
- in contrast to Lo's proof where the overall error increases linearly with the number of inputs.
- crucial use of von Neumann's minimax theorem

Conclusion \& Open Problems

- completes our understanding of why allow to do two-party secure computation.
- devil lies in
- is such a strong security definition necessary for impossibility proof? can it be done with a weaker definition?
- randomized functions?

Thank you!

