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I.Continuous-variable & coherent states QKD
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‣Quadrature operators     and     = projection of the field’s 
amplitude in the phase space, similar to the position and 
momentum for a massive particle

Continuous variables
‣Decomposition on a continuous basis

D E S C R I P T I O N  O F  A  Q UA N T U M  S TAT E
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Wigner function
‣Quasiprobability distribution

D E S C R I P T I O N  O F  A  Q UA N T U M  S TAT E

Quadrature measurement
‣Homodyne detection
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‣ The state                 is sent to Bob

Quantum part
‣ Alice randomly selects xA and pA from a Gaussian 

distribution of variance VA

G G 0 2  P ROTO C O L
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Alice Bob
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Equivalent Entanglement-Based version
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L I M I T S
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L I M I T S

Maybe with an amplifier in Bob’s station ?

Bob

Homodyne
detection

xB pBorAmplifier
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DETERMINISTIC PHASE INSENSITIVE AMPLIFIER

X

P

↵

g↵

N0Noise 

(g2�1)N0

g2N0Noise 

Added noise

‣Must add extra noise
Phys. Rev. D 26, 1817 (1982)
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DETERMINISTIC PHASE SENSITIVE AMPLIFIER

‣ Doesn’t add extra noise ➞ preserves the SNR

‣ Still amplifies the initial noise

‣ Only compensates homodyne imperfections

X

P

↵

N0Noise 

XB gXB

g2N0Noise 

Reduction 
of P

Amplification of X

Journal of Physics B 42, 
114014 (2009)
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What happens if the amplifier is 
allowed to be non deterministic?
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II.  Heralded Noiseless Linear Amplifier (NLA)
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T H E  N O I S E L E S S  A M P L I F I E R

|↵i ! |g↵i

T.C.Ralph and A.P.Lund, 
arXiv:0809.0326 (2008)

‣ Performs the transformation 

‣ Phase insensitive, but doesn’t add extra noise 

‣Doesn’t amplify the input noise
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T H E  N O I S E L E S S  A M P L I F I E R
Description of the NLA
‣ Cannot be unitary  ➡  must be probabilistic
‣Described by an unbounded operator 
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‣ Coherent state

‣ EPR state

‣ Thermal state

(gn̂|ni=gn|ni)
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Implementation of a Nondeterministic Optical Noiseless Amplifier

Franck Ferreyrol, Marco Barbieri, Rémi Blandino, Simon Fossier, Rosa Tualle-Brouri, and Philippe Grangier
Groupe d’Optique Quantique, Laboratoire Charles Fabry, Institut d’Optique, CNRS, Université Paris-Sud, Campus Polytechnique,

RD 128, 91127 Palaiseau cedex, France
(Received 10 December 2009; published 24 March 2010)

Quantum mechanics imposes that any amplifier that works independently on the phase of the input

signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted in the

unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt

such evolution via a measurement, providing a random outcome able to herald a successful—and

noiseless—amplification event. Here we show a successful realization of such an approach; we perform

a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a

strong heralded amplification, with about a 6 dB gain and a noise level significantly smaller than the

minimal allowed for any ordinary phase-independent device.

DOI: 10.1103/PhysRevLett.104.123603 PACS numbers: 42.50.Dv, 03.67.Hk, 42.50.Ex, 42.50.Xa

Quantum optical detection techniques are so advanced
that quantum fluctuations are the main source of noise.
Therefore, when amplifying optical signals, one has to
look at the intrinsic limitations of the process: any ampli-
fier cannot work independently on the phase of the input
unless some additional noise is added [1]. The origin of this
limitation is that adding extra noise is needed for the output
field to obey Heisenberg’s uncertainty relation. Also, it is
connected to the impossibility of realizing arbitrarily faith-
ful copies of a quantum signal [2,3], and it is thus deeply
rooted in the linear and unitary evolution of quantum
mechanical systems.

Various aspects of this limitation have been studied by
using optical parametric amplifiers [4–7]. For instance, a
nondegenerate optical parametric amplifier amplifies all
input phases, and introduces the minimal level of added
noise, which degrades the signal-to-noise ratio [1]. The
same process, driven in the degenerate regime, may pro-
vide amplification preserving the signal-to-noise ratio.
However, this occurs in a phase-dependent fashion: only
the part of the signal in phase with the pump light will be
amplified, while the part which is 90! out of phase with the
pump will be deamplified [4,5].

Amore intriguing idea is to find a way to tamper with the
linear evolution of quantum mechanics; this is actually
possible, though nondeterministically, by conditioning
our observation upon the result of a measurement [8].
Noiseless amplification can then take place, but only a
fraction of the times, and the correct operation is heralded
[9,10]. This strategy is commonly adopted for building
effective nonlinearities in linear quantum optical gates
[11–13].

Here we follow the proposal of Ralph and Lund [9] to
demonstrate experimentally that heralded nondeterministic
amplification can realize processes which would be impos-
sible for usual amplifiers. Unlike another realization [14],
we have direct access to the output state via state tomog-

raphy, so we can provide a complete description of the
process, and analyze the limitations arising from nonideal
components. Our study is relevant in the long-term view of
the integration of amplifiers in quantum communication
lines [15].
The conceptual layout of the noiseless amplifier is pre-

sented in Fig. 1. The operating principle is closely related
to quantum teleportation [16–19], and is actually a varia-
tion of the quantum scissors protocol [20,21]: the phase
and amplitude information of the input are transferred via a
generalized teleportation onto a superposition of the vac-
uum and a single photon. If the input is not too large, such
superposition is still adequate to describe a coherent state
with a good fidelity. The amplification is allowed by the
use of a nonmaximally entangled resource [9].
More in detail, a coherent state j!i is fed into the input

mode of the amplifier; at the same time an auxiliary single-

FIG. 1 (color online). Conceptual layout of the noiseless am-
plifier. A single photon is split on an asymmetric beam splitter
(A-BS). The input state j!i is superposed with reflected output
of the A-BS on asymmetric beam splitter (S-BS). A successful
run of the amplifier is flagged by a single-photon event on
detector D1 and no photons on detector D2. The transmitted
mode constitutes the output mode of the amplifier, and is
approximately in an amplified state jg!i, conditioned on the
right detection events, as described by Eq. (1).

PRL 104, 123603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 MARCH 2010

0031-9007=10=104(12)=123603(4) 123603-1 ! 2010 The American Physical Society
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Experimental implementation (quantum scissors)

‣Output state truncated at 1 photon
‣Good approximation for small amplitude

T H E  N O I S E L E S S  A M P L I F I E R

PRL 104, 123603 (2010)
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arXiv:0809.0326 (2008) 
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Experimental implementation (quantum scissors)

photon beam is provided, and split onto an asymmetric
beam splitter (A-BS) with reflectivity r; this prepares the

two-mode entangled state
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! r2

p
j1iTj0iR þ rj0iTj1iR,

where T, R denote the output modes of the A-BS. We
perform a collective measurement on the input state and
part of the entangled state, in our case the R mode; this
consists in superposing them on a symmetric beam splitter
(S-BS), and performing photon counting at the outputs. A
successful event is flagged by a single-photon detection by
the detector D1, and no photons detected by the detector
D2; conditioned on this event, the (non normalized) state of
the T mode, which represents the output of our amplifier, is
[9]

e!ðk!2kÞ=2 rffiffiffi
2

p
"
j0iþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! r2

p

r
!j1i

#
: (1)

The output is thus prepared approximately in the coher-

ent state jg!i, with g ¼
ffiffiffiffiffiffiffiffi
1!r2

p

r ; the probability of this event

is given by the squared norm of the state (1): P ¼
e!k!2k r2

2 ð1þ g2k!2kÞ. Events where D2 detects one pho-
ton and D1 detects none can still be accepted by using an
active phase modulation [9]. Such conditioning is respon-
sible for the dependence of the output beam on the input. In
fact, if we observe the output unconditionally, we would
find a mixture of the vacuum and the one-photon states
carrying no information about j!i.

The main limitation of the amplifier is the size of input
state: for its correct operation it is necessary that
g2k!2k & 1. Larger coherent states can be amplified by
splitting the input into several modes, each one with an
acceptable size for the amplifier. These modes are then

amplified individually, and finally recombined nondeter-
ministically on a single mode [9]. Here we will focus on
small values of k!2k, which are relevant for continuous-
variable quantum cryptography [22].
Single photons are produced by using spontaneous para-

metric down-conversion in a nonlinear crystal. This pro-
cess generates photon pairs in two correlated modes; the
presence of a single photon on one mode is inferred by a
click on a single-photon detector D0 placed on the other
twin mode [23]. Our down-conversion source is based on a
100 "m thick KNbO3 slab, pumped by doubled Ti:sap-
phire laser pulses (Pmax ¼ 3:3 mW, #p ¼ 423:5 nm,!t ¼
220 fs, repetition frequency !$ ¼ 800 kHz). Phase
matching is temperature-tuned to obtain frequency degen-
erate emission at an angle'3(. The amplifier works condi-
tionally on a coincidence count between D0 and D1.
Because of the limited efficiency of our single-photon
detection, D2 can be dropped from the actual implementa-
tion without significantly affecting the performance of the
amplifier.
We used homodyne detection and a maximum-

likelihood reconstruction algorithm [24] to determine the
Wigner quasiprobability distribution of the output of our
amplifier for several values of k!2k. A nominal value g ¼
2 corresponding to a 6 dB gain in intensity was set by
adjusting the A-BS. Each state tomography is recon-
structed from a set of 200 000 points divided into 12 histo-
grams according to the measured quadrature. The
measured success rates depend on the amplitude, and
ranges from '1% for k!k ’ 0:1 up to '6% for k!k ’ 1.
The Wigner functions shown in Fig. 2 summarize the
behavior of the amplifier for growing input amplitudes:
even for small amplitudes, k!k ¼ 0:1, one can observe

FIG. 2 (color online). Experimental results for the Wigner functions illustrating the evolution of the output state. For each value of
k!k we show a 3D and a contour plot of the Wigner function. These results are obtained directly from raw homodyne data, without
corrections for the detection efficiency. The value of ! is arbitrarily chosen to be real and positive, but the results would be the same for
any other choice, since the amplifier gain is phase independent.

PRL 104, 123603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 MARCH 2010

123603-2

T H E  N O I S E L E S S  A M P L I F I E R

PRL	  104,	  123603	  (2010)

Experimental implementation

‣Good proof of principle
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Nondeterministic Noiseless Linear Amplification of Quantum Systems

T.C.Ralph1 and A.P.Lund1,2,
1Department of Physics, University of Queensland, Brisbane 4072, QLD, Australia,

2Centre for Quantum Computer Technology, School of Science, Griffith University, QLD, Australia,
(Dated: September 1, 2008)

We introduce the concept of non-deterministic noiseless linear amplification. We propose a linear
optical realization of this transformation that could be built with current technology. We discuss
two applications; ideal probabilistic cloning of coherent states and distillation of continuous variable
entanglement. For the latter example we demonstrate that highly pure entanglement can be distilled
from transmission over a lossy channel.

It is well known that a linear or phase insensitive ampli-
fier acting on a quantum optical field, or more generally
on any harmonic oscillator state, must introduce noise [1].
This noise enforces the no-cloning principle [2], the uncer-
tainty principle for simultaneous measurements [3] and
limits signal to noise in quantum limited communication
and metrology protocols [4] as well as guaranteeing secu-
rity in continuous variable quantum key distribution [5].
Never-the-less, we show here that a non-deterministic,
but heralded, noiseless linear amplifier is possible.

The argument against a noiseless linear amplifier can
be made succinctly as follows. Suppose that we had a
unitary operation T̂ that could produce the transforma-
tion

T̂ |α〉 = c|gα〉 (1)

where g is a real number obeying |g| > 1, |α〉 is a coherent
state of the field or oscillator with complex amplitude α,
and c is a complex number obeying |c| = 1. Now consider

T̂ â|α〉 = T̂ âT̂ †T̂ |α〉
= T̂ âT̂ †|gα〉
= α|gα〉 (2)

where â is the annihilation operator for the field or os-
cillator with commutator [â, â†] = 1. The second and
third lines of Eq.2 say that the coherent state |gα〉 is an
eigenstate of the annihilation operator b̂ = T̂ âT̂ † with
eigenvalue α, however this implies that b̂ = 1/gâ, which
is a contradiction because this means [b̂, b̂†] = 1/g2, but
[b̂, b̂†] = T̂ [â, â†]T̂ † = T̂ T̂ † = 1. The usual conclusion
is that an additional noise operator must be added to
retrieve the correct commutator and hence linear ampli-
fication inevitably takes a pure state to a mixed state,
i.e. the transformation of Eq.1 is not possible.

An alternative is that the transformation of Eq.1 is
valid but with T̂ a non-deterministic (non-unitary) trans-
formation. This will be physically allowed provided, on
average, the distinguishability of the amplified states is
not increased. This in turn implies |c| ≤ 1/g [6]. Such a
transformation, if heralded, might still be very useful. In
the following we propose an explicit construction of such
a non-deterministic, noiseless linear amplifier (NLA) us-
ing current quantum optics technology and discuss appli-

cations and the limits to the fidelity of the device under
practical conditions.
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FIG. 1: Schematic of the noiseless linear amplifier. The N-
splitter is an array of beamsplitters that evenly divides the
input beam. The second N-splitter coherently recombines the
beams and is considered to have succeeded if no light exits
through the other ports, as determined by photon counters.
The interaction labelled ”A” interacts a single photon ancilla
with an input beam as shown in the gray inset. The upper
beamsplitter is 50:50 whilst the lower beamsplitter has trans-
mission η as shown. The interaction succeeds if a single count
is recorded at a′ and no count at a′′, or vice versa.

The NLA is shown schematically in Fig.1. The opti-
cal mode to be amplified is divided evenly between N
different paths using beamsplitters. Each path is then
interacted with a single photon ancilla as shown in the
inset to Fig.1. This interaction is a generalization of the
quantum scissors introduced by Pegg et al [7]. The inter-
action is successful if one and only one photon is counted
at the indicated ports. The paths are then recombined
interferometrically with the inverse to the arrangement
of beamsplitters used to split up the original mode. In
the absence of the single photon interactions all the light
would emerge in the original mode. Photon counters are
placed at all the other outputs. Successful operation of
the device is heralded when all these photon counters

arXiv:0809.0326 (2008) 
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V I RT UA L  I M P L E M E N TAT I O N  
U S I N G  P O S T- S E L E C T I O N

3

FIG. 2: Prepare and measure and entanglement based ver-
sions of a protocol using Gaussian post-selection. a) P&M
scheme: Alice uses two classical Gaussian strings (xA, pA) to
prepare and transmit an ensemble of coherent states to Bob
who homodyne detects and then applies a Gaussian weight-
ing function. b) Equivalent EB scheme: Alice distributes one
arm of an EPR pair and makes a heterodyne measurement ob-
taining measurement results directly proportional to (xA, pA).
Bob first passes his arm through an NLA, classically amplifies
via a vacuum seeded two-mode squeezer (TMS) then mixes
his mode with one arm of another entangled pair (EPRB) on
a beamsplitter. He finally homodyne detects and obtains ex-
actly the measurement results from the P&M scheme. The
heralding signal of the NLA is given to Eve but the unmea-
sured ancillae are kept within Bob’s station.

by x̂ = â + â† and p̂ = i(â† � â) where we have nor-
malised the vacuum noise to unity. Bob then filters his
results with the goal of selecting an ensemble which is
a Gaussian distribution with a certain target variance
V
PS

. For the most common case of a Gaussian channel
Bob’s input distribution is another Gaussian of variance
V
B

and the appropriate weighting function would look
like w(x) =

p
V
B

/V
PS

exp(�x2(1/V
PS

� 1/V
B

)). In the
relevant case V

PS

> V
B

this function is convex so in
order to arrive at a proper probability distribution we
will choose some endpoints ±�, renormalise the func-
tion to the value at this point and set all values outside
this range to unity. For a Gaussian input state the exact
filter function is

W (x) = N

✓
1 +

✓
w(x)

w(�)
� 1

◆
(⇥(x+�)�⇥(x��))

◆

(4)
where ⇥(x) is the Heaviside step function and the frac-
tion of data kept is the re-normalisation N . When �
is 0 this operation is the identity. As � ! 1 it re-
sults in a Gaussian distribution of variance V

PS

and in
between give a slightly non-Gaussian state with variance
V
B

< V < V
PS

. Finally Alice and Bob publicly announce
a subset of their data to characterise the covariance ma-
trix on both the initial and post-selected ensemble and, if
secure, engage in reconciliation and privacy amplification
to distill a completely secure key. Notice that although
the weight function is smooth instead of hard edged it is
determined entirely by Bob and the only information he
sends to Alice is a ‘keep or reject’ signal.

The equivalent entanglement based scheme, Fig. 2

panel b), involves Alice preparing a two-mode squeezed
vacuum or EPR state, one mode of which she keeps
and measures, the other being transmitted to Bob.
Alice’s makes a heterodyne detection whereas Bob’s
measurement, depending upon the target variance, de-
composes into a combination of a noiseless amplifica-
tion/distillation followed by classical amplification and
finally some additional noise. The necessary Gaussian en-
tanglement distillation is achieved via the noiseless linear
amplifier (NLA) [11, 12] with the classical amplifier and
additional noise corresponding to a two-mode squeezer
with vacuum ancilla and a beamsplitter with an EPR
pair ancilla respectively. If we can uniquely characterise
Gaussian operations that perform the necessary trans-
formations from the transmitted to the post-selected en-
semble at the level of the covariance matrix then we can
apply the above proof and determine the security.
To illustrate this method we evaluate performance for

the most common case, the noisy Gaussian channel. Such
a channel is completely parameterised by it’s transmis-
sion T and excess thermal noise ⇠ [13]. One can calculate
the action of an NLA on an EPR state sent through a
general Gaussian channel [14, 15] with the result being
an e↵ective protocol where stronger entanglement was
distributed through a channel with less loss but greater
excess noise, leading to an overall advantage. Inverting
the relationship for the e↵ective entanglement generated
gives a relationship,

g = 1 +
2(V PS

A

� V
A

)

T (V
A

(2 + V PS

A

� ⇠) + V PS

A

⇠)
(5)

that uniquely identifies the gain of the NLA based only
upon the measured channel parameters and Alice’s mod-
ulation variance before and after after post-selection.
Bob and Alice’s other operations are just beamsplitters
and two-mode squeezing, their e↵ect on the covariance
matrix being given by the appropriate symplectic trans-
formations [16]. Given Alice and Bob’s measurement of
the covariance matrix before and after the post-selection
straightforward algebra allows us to characterise all pa-
rameters in Fig.2 and thus unconditionally bound Eve’s
information via Eq.(3). For this form of post-selection,
the resultant distributions turn out to be extremely close
to Gaussian, so we have the option of making use of re-
cent improvements in the reconciliation e�ciency Gaus-
sian variables [17] as well as the sign encoding of [4] and
we will choose the former case here. See [14] for a de-
tailed calculation of these quantities and the secret key
rate. The crucial tradeo↵ in this scheme is between a
large post-selection to improve the e↵ective channel and
the proportion of measurement results that are discarded.
We plot the key rate as a function of distance of a

coherent state homodyne protocol, Fig.3, for both di-
rect and reverse reconciliation along with the case with-
out post-selection for comparison. In all plots the rec-
onciliation e�ciency is taken to be a constant value of
� = 0.9 and for each point Alice’s modulation variance is
independently optimised for each protocol along with the

2

FIG. 1: (a) Prepare-and-measure CV QKD protocol with co-
herent states and heterodyne detection. (b) Equivalent vir-
tual entanglement-based protocol, with heterodyne detection
on both sides.

CV QKD protocols.—Gaussian protocols, to which
we restrict here, are based on the Gaussian modula-
tion of Gaussian (coherent or squeezed) states of light
and Gaussian (homodyne or heterodyne) measurements,
which gives four possibilities. In the first two protocols,
Bob performs homodyne detection, measuring at random
the x or p quadrature, while Alice emits a Gaussian-
modulated coherent [19] or squeezed [20] state. In the
next two, Bob performs heterodyne detection, measur-
ing the x and p quadratures simultaneously, while Al-
ice emits again a coherent [21] or squeezed [22] state.
Note the existence of a fifth protocol, where Alice sends
(mixed) thermal states instead of pure states [23].
In what follows, we focus on the most symmetric pro-

tocol [21], where Alice emits coherent states |α〉 and
Bob projects onto coherent states |β〉 (heterodyne de-
tection), as illustrated in Fig. 1(a). Alice draws a com-
plex amplitude α from a bivariate Gaussian distribution
of variance V , and sends |α〉 to Bob through a quan-
tum channel L which is controlled by Eve. Then, Bob
makes a projective measurement onto coherent states and
obtains the outcome β. After N repetitions of these
steps, Alice and Bob extract a secret key from the ac-
cumulated classical data. From Eve’s point of view, this
prepare-and-measure protocol is indistinguishable from
an entanglement-based scheme where Alice prepares an
entangled two-mode squeezed vacuum state

|ΨEPR〉 =
√

1− λ2

∞
∑

n=0

λn|n, n〉 (1)

with λ2 = 2V/(2V + 1), and performs heterodyne mea-
surement on one mode, see Fig. 1(b).
This virtual entanglement picture [14] is very useful

for analyzing the security and understanding the benefit
of noiseless amplification. Suppose that L is a pure loss

FIG. 2: (a) CV QKD with coherent states and heterodyne de-
tection augmented with noiseless amplification of the received
signal. (b) Equivalent protocol where noiseless amplification
is emulated by post-processing Bob’s measurement data.

channel with transmittance T . As shown in ref. [24],
an entangled state (1) can be faithfully distributed over
L if Alice sends one mode of a weakly entangled state
(λ # 1) to Bob, who noiselessly amplifies his mode. In
the considered CV QKD protocol, this would correspond
to weak modulation on Alice’s side (V # 1) combined
with noiseless amplification on Bob’s side, see Fig. 2(a).
Virtual noiseless amplification.—The noiseless ampli-

fier is described by the non-unitary operator gn̂, where
n̂ denotes the photon number operator. Although it is
probabilistic, this filter is Gaussian in the sense that it
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Forgetting about the modulation variance V , this can be
viewed as effectively converting the Gaussian channel L
into another Gaussian channel with presumably higher
associated performances. Moreover, we can recycle all
security proofs and corresponding secret key rates that
have be obtained using the Gaussian formalism [16–18].
Unfortunately, gn̂ is an unbounded operator for g > 1,

so it cannot be implemented exactly, and, furthermore,
its optical implementation is very challenging. Remark-
ably, these obstacles can be overcome by emulating the
noiseless amplifier, which is possible as it is immediately
followed by heterodyne measurement. Note that we can
consider the noiseless amplifier gn̂ at the output of chan-
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Denoting by ρ̂ the mixed state at the output of L, Bob
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Theoretical implementation

Phase amplification
Nat. Phys. 6, 767 (2010)

Photon addition and subtraction
Nature Photon. 5, 52 (2011)

Quantum scissors
PRL 104, 123603 (2010)
Nat. Photon. 4, 316 (2010)

Short review of the experiments
Laser Physics Letters 8, 411–417 (2011)

Quantum scissors
T.C.Ralph and A.P.Lund, arXiv:0809.0326 (2008) 

Weak values
arXiv:0903.4181 (2009)

Photon addition and subtraction 
PRA 80, 053822 (2009)

Phase amplification
PRA 81, 022302 (2010)

Experimental implementation
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This talk
PRA 86, 012327 (2012)

Optical loss suppression
arXiv:1206.2852 (2012)

Virtual implementation and QKD
arXiv:1205.6933 (2012)
arXiv:1206.0936 (2012)

Cloning of coherent states
PRA 86, 010305 (2012)

No violation of causality
PRA 86, 012324 (2012)

Error correction
PRA 84, 022339 (2011)

Applications
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III. Improvement of CV-QKD performances 
with the NLA
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Assumption:
‣ Linear lossy and noisy Gaussian channel

- transmittance 
- added noise

T
✏

M OT I VAT I O N S

How does Bob’s NLA improve
‣ the maximum distance of transmission?

‣ the maximum tolerable noise?

‣ the key rate?
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E Q U I VA L E N T  S YS T E M

|�i
EPR state

T, ✏
Quantum channel

⌘, ✏g

gn̂

NLA

Effective EPR state Effective quantum channel

A B

A B|⇣i

Covariance 
matrices

="

�AB(�, T, ✏, g) = �AB(⇣, ⌘, ✏
g, g=1)
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Effective EPR parameter

‣The NLA increases the entanglement
‣     depends linearly on

E F F E C T I V E  PA R A M E T E R S

⇣ = �

s
(g2 � 1) (✏� 2)T � 2

(g2 � 1) ✏T � 2

Physical constraint

⇣ �

⇣

0  ⇣ < 1 ) 0  � <

 s
(g2�1) (✏�2)T�2

(g2�1) ✏T � 2

!�1



R. Blandino - QCRYPT 2012

E F F E C T I V E  PA R A M E T E R S

Effective transmittance     and noise 

‣The NLA increases the transmittance and the noise
‣No dependence on 

⌘

�

✏g

⌘ =
g2T

(g2 � 1)T [ 14 (g
2 � 1) (✏� 2) ✏T � ✏+ 1] + 1

✏g = ✏+
1

2

�
g2 � 1

�
(2� ✏) ✏T

Physical constraints
0  ⌘  1
0  ✏g

�
)

⇢
✏  2
g  g

max

(T, ✏)



R. Blandino - QCRYPT 2012

= Key rate with the effective parameters without the 
NLA, weighted by the probability of success

Alice optimizes the variance modulation to 
maximize the key rate

S E C R E T  K E Y  R AT E

Key rate with the NLA

Psuc

�I(�, T, ✏,�) = �IAB(�, T, ✏)� �BE(�, T, ✏)

Key rate without the NLA

�INLA(�, T, ✏,�) = Psuc�I(⇣, ⌘, ✏g,�)
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Remarks on the probability of success
‣Depends on the physical implementation
‣ Realistic probability of success may be much smaller
‣Acts simply as a scaling factor
‣Doesn’t change the positivity or negativity of a key rate

P RO B A B I L I T Y  O F  S U C C E S S

Optimistic upper bound

Psuc 
1

g2
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Tolerable losses are increased by

I M P ROV E M E N T  O F  P E R F O R M A N C E S

‣Without the NLA: minimum value of transmittance

(T << 1, ✏ 6=0)

Tlim

‣With the NLA:

Strong losses regime 

The maximum distance of transmission can be 
arbitrarily increased by increasing the gain

TNLA
lim =

1

g2
Tlim

20 log10 g dB
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� = 0.95

✏ = 0.05

Maximized key rate

I M P ROV E M E N T  O F  P E R F O R M A N C E S

Increase of the 
maximum distance 
of transmission by 
increasing the gain
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Maximum tolerable noise

� = 0.95

✏ = 0.05

More losses for a given noise

More noise for given losses

I M P ROV E M E N T  O F  P E R F O R M A N C E S
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Can we arbitrarily increase the key rate?

Losses 30 dB

� = 1

✏ = 0.1

‣Optimal value of the gain
‣ If the gain if too important, the effective noise becomes too 

high

I M P ROV E M E N T  O F  P E R F O R M A N C E S

No...
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C O N C L U S I O N

NLA in CV-QKD with a Gaussian lossy noisy channel

‣ Equivalent to an effective system without the NLA

‣ The maximum distance of transmission can be arbitrarily increased 

‣ Improvement of the maximum tolerable noise

‣ Explicit formulas for GG02, same resultats for other CV-QKD 

protocols (same effective parameters)

   Reference: R. Blandino et al., PRA 86, 012327 (2012)
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T H A N K  YO U
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O U R  T E A M
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