

IMPROVING THE MAXIMUM TRANSMISSION DISTANCE IN CV-QKD USING A NOISELESS LINEAR AMPLIFIER

<u>R. Blandino</u>¹, A. Leverrier², J. Etesse¹, M. Barbieri^{1,3}, P. Grangier¹ and R. Tualle-Brouri¹

¹Laboratoire Charles Fabry de l'Institut d'Optique - CNRS Palaiseau, France ²Institute for Theoretical Physics, ETH Zurich, Switzerland ³Clarendon Laboratory, University of Oxford, United Kingdom

remi.blandino@institutoptique.fr

Can we increase this maximum distance ?

OUTLINE

I.Continuous-variable & coherent states QKD

II. Heralded Noiseless Linear Amplifier (NLA)

III.Improvement of CV-QKD performances with the NLA

I.Continuous-variable & coherent states QKD

n

Discrete variables

• Decomposition on a discrete basis $|\psi\rangle = \sum c_n |n\rangle$

Continuous variables

• Decomposition on a continuous basis $|\psi\rangle = \int dx \ \psi(x) |x\rangle$

• Quadrature operators \hat{X} and \hat{P} = projection of the field's amplitude in the phase space, similar to the position and momentum for a massive particle

$$\hat{\boldsymbol{X}} = \left(\hat{\boldsymbol{a}} + \hat{\boldsymbol{a}}^{\dagger}
ight) \sqrt{N_0}$$

 $\hat{\boldsymbol{P}} = \left(\hat{\boldsymbol{a}}^{\dagger} - \hat{\boldsymbol{a}}
ight) i \sqrt{N_0}$

DESCRIPTION OF A QUANTUM STATE

Wigner function

Quasiprobability distribution

Quadrature measurement

Homodyne detection

GG02 PROTOCOL

PRL **88**, 057902 (2002) Nature **421**, 238 (2003)

Quantum part

• Alice randomly selects x_A and p_A from a Gaussian distribution of variance V_A

- The state $|x_A+ip_A\rangle$ is sent to Bob
- ${\scriptstyle \bullet}$ Bob randomly measures the X or P quadrature

GG02 PROTOCOL

Equivalent Entanglement-Based version

Source of coherent states with: - amplitude proportional to $\lambda(x_A + ip_A)$ - variance modulation $V_A = \frac{1+\lambda^2}{1-\lambda^2} - 1$ R. Blandino - QCRYPT 2012

Quantum Info. Comput. **3**, 535–552 (2003)

RMP 84, 621 (2012)

LIMITS

Can we increase this maximum distance ?

Maybe with an amplifier in Bob's station ?

Must add extra noise

Phys. Rev. D 26, 1817 (1982)

DETERMINISTIC PHASE SENSITIVE AMPLIFIER

Amplification of X

- ▶ Doesn't add extra noise → preserves the SNR
- Still amplifies the initial noise
- Only compensates homodyne imperfections

Journal of Physics B **42**, 114014 (2009)

What happens if the amplifier is allowed to be non deterministic?

II. Heralded Noiseless Linear Amplifier (NLA)

- \bullet Performs the transformation $|\alpha\rangle \rightarrow |g\alpha\rangle$
- Phase insensitive, but doesn't add extra noise
- Doesn't amplify the input noise
 R. Blandino QCRYPT 2012

T.C.Ralph and A.P.Lund, arXiv:0809.0326 (2008)

Description of the NLA

- ► Cannot be unitary ➡ must be probabilistic
- Described by an unbounded operator $g^{\hat{n}}$ $(g^{\hat{n}}|n\rangle = g^{n}|n\rangle)$

Transformation of usual states
Gaussian operation

Coherent state

EPR state

 $g^{\hat{n}}|\alpha\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} g^n |n\rangle \propto |g\alpha\rangle$

 $g^{\hat{n}}|\lambda\rangle = \sqrt{1-\lambda^2} \sum \lambda^n g^n |n,n\rangle \propto |g\lambda\rangle$ n=0

Thermal state

 $g^{\hat{n}} \hat{\boldsymbol{\rho}}_{\rm th}(\lambda) g^{\hat{n}} = (1 - \lambda^2) \sum_{n=0}^{\infty} g^{2n} \lambda^{2n} |n\rangle \langle n| \propto \hat{\boldsymbol{\rho}}_{\rm th}(g\lambda)$

Experimental implementation (quantum scissors)

- Output state truncated at 1 photon
- Good approximation for small amplitude

Experimental implementation (quantum scissors)

► Good proof of principle R. Blandino - QCRYPT 2012 PRL 104, 123603 (2010)

Quantum scissors

arXiv:0809.0326 (2008)

Polynomial approximation

$$g^{\hat{n}} = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{(\ln g)^k}{k!} \hat{\boldsymbol{n}}^k$$

PRA 80, 053822 (2009)

VIRTUAL IMPLEMENTATION USING POST-SELECTION

Homodyne detection for Bob

N.Walk et al., arXiv:1206.0936 (2012)

Heterodyne detection for Bob

J. Fiurasek and N. J. Cerf, arXiv: 1205.6933 (2012)

Theoretical implementation

Quantum scissors T.C.Ralph and A.P.Lund, arXiv:0809.0326 (2008)

Photon addition and subtraction PRA 80, 053822 (2009)

Experimental implementation

Quantum scissors

PRL 104, 123603 (2010) Nat. Photon. 4, 316 (2010)

Photon addition and subtraction

Nature Photon. 5, 52 (2011)

Weak values arXiv:0903.4181 (2009)

Phase amplification PRA 81, 022302 (2010)

Short review of the experiments Laser Physics Letters 8, 411–417 (2011)

> Phase amplification Nat. Phys. 6, 767 (2010)

Applications

This talk PRA 86,012327 (2012) **Error correction** PRA 84, 022339 (2011)

Virtual implementation and QKD

arXiv:1205.6933 (2012) arXiv:1206.0936 (2012)

Optical loss suppression

arXiv:1206.2852 (2012)

Cloning of coherent states PRA 86,010305 (2012)

No violation of causality PRA 86, 012324 (2012)

III. Improvement of CV-QKD performances with the NLA

How does Bob's NLA improve

- the maximum distance of transmission?
- the maximum tolerable noise?
- the key rate?

Assumption:

- Linear lossy and noisy Gaussian channel
 - transmittance T
 - added noise ϵ

EFFECTIVE PARAMETERS

Effective EPR parameter ζ

$$\zeta = \lambda \sqrt{\frac{\left(g^2 - 1\right)\left(\epsilon - 2\right)T - 2}{\left(g^2 - 1\right)\epsilon T - 2}}$$

The NLA increases the entanglement • ζ depends linearly on λ

Physical constraint

$$0 \le \zeta < 1 \Rightarrow 0 \le \lambda < \left(\sqrt{\frac{(g^2 - 1)(\epsilon - 2)T - 2}{(g^2 - 1)\epsilon T - 2}}\right)^{-1}$$

Effective transmittance η and noise ϵ^g

$$\eta = \frac{g^2 T}{\left(g^2 - 1\right) T \left[\frac{1}{4} \left(g^2 - 1\right) \left(\epsilon - 2\right) \epsilon T - \epsilon + 1\right] + 1}$$
$$\epsilon^g = \epsilon + \frac{1}{2} \left(g^2 - 1\right) \left(2 - \epsilon\right) \epsilon T$$

The NLA increases the transmittance and the noise
No dependence on λ

Physical constraints

$$\begin{cases} 0 \le \eta \le 1 \\ 0 \le \epsilon^g \end{cases} \} \Rightarrow \begin{cases} \epsilon \le 2 \\ g \le g_{max}(T, \epsilon) \end{cases}$$

SECRET KEY RATE

Key rate without the NLA

 $\Delta I(\lambda, T, \epsilon, \beta) = \beta I_{AB}(\lambda, T, \epsilon) - \chi_{BE}(\lambda, T, \epsilon)$

Key rate with the NLA

= Key rate with the effective parameters without the NLA, weighted by the probability of success $P_{\rm suc}$

$$\Delta I_{\rm NLA}(\lambda, T, \epsilon, \beta) = P_{\rm suc} \Delta I(\zeta, \eta, \epsilon^g, \beta)$$

Alice optimizes the variance modulation to maximize the key rate

PROBABILITY OF SUCCESS

Optimistic upper bound

$$P_{\rm suc} \le \frac{1}{g^2}$$

Remarks on the probability of success

- Depends on the physical implementation
- Realistic probability of success may be much smaller
- Acts simply as a scaling factor
- Doesn't change the positivity or negativity of a key rate

- Strong losses regime $(T << 1, \epsilon \neq 0)$
 - Without the NLA: minimum value of transmittance $T_{\rm lim}$
 - With the NLA:

$$T_{\rm lim}^{\rm NLA} = \frac{1}{g^2} T_{\rm lim}$$

Tolerable losses are increased by $20 \log_{10} g \, dB$ The maximum distance of transmission can be arbitrarily increased by increasing the gain

IMPROVEMENT OF PERFORMANCES

Maximized key rate

IMPROVEMENT OF PERFORMANCES

Maximum tolerable noise

IMPROVEMENT OF PERFORMANCES

Can we arbitrarily increase the key rate? No...

- Optimal value of the gain
- If the gain if too important, the effective noise becomes too high
 R. Blandino - QCRYPT 2012

CONCLUSION

NLA in CV-QKD with a Gaussian lossy noisy channel

- Equivalent to an effective system without the NLA
- The maximum distance of transmission can be arbitrarily increased
- Improvement of the maximum tolerable noise
- Explicit formulas for GG02, same resultats for other CV-QKD protocols (same effective parameters)

Reference: R. Blandino et al., PRA **86**, 012327 (2012)

THANK YOU

OUR TEAM

R.Blandino

J.Etesse

R.Tualle-Brouri P.Grangier

M. Barbieri

A. Leverrier