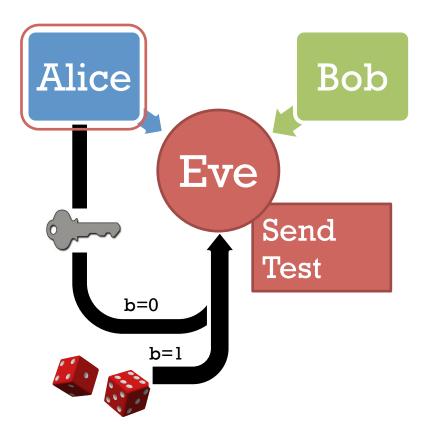
Quantum Key Distribution in the Classical Authenticated Key
 Exchange Framework
 Michele Mosca, Douglas Stebila, Berkant Ustaoglu

University of Waterloo; Perimeter Institute Queensland University of Technology Izmir Institute of Technology

arXiv:1206.6150

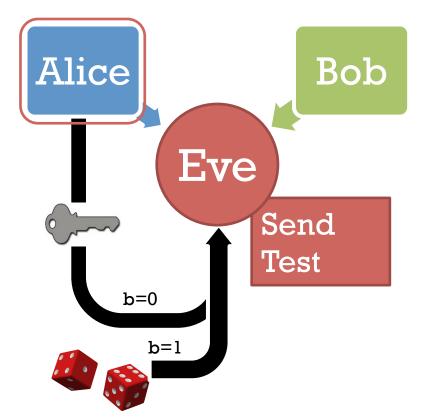
QKD in classical authenticated key exchange framework

- State-of-the-art in classical key agreement models
- What secrets can be leaked while keeping the session key secure?
 - monolithic information leakage >>> fine-grained leakage
- Modeling QKD in this framework
 - using computational or information-theoretic authentication


Authenticated key exchange

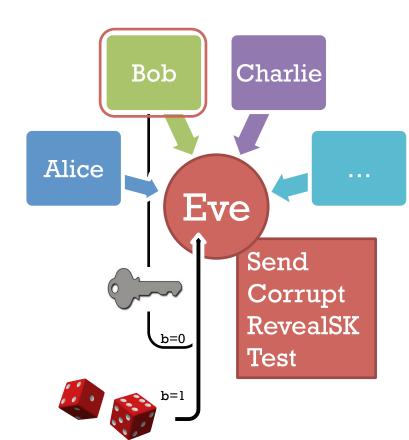
- Two parties establish a shared secret using only public communication and an authenticated channel
- Classical public-key key exchange protocols:
 - Diffie–Hellman (1976)
 - Key transport using public key encryption (e.g. RSA) (1978)
- QKD: BB84, EPR, Time-reversed, ...

+ Provable security


- Provable security introduced by Goldwasser and Micali for public key encryption in 1984.
- A primitive or protocol is a tuple of algorithms.
- A security property (or "security model") is described by an interactive algorithm between a challenger and an adversary algorithm.
- Security result is a bound on the probability a particular class of algorithms can cause the challenger to output 1.

+ Simple security model

- Two parties, Alice and Bob execute a session of a protocol
- Send: Eve controls all communication between parties.
- Test: Eve picks a target session. Challenger flips a coin b. If b=0: give Eve real key If b=1: give Eve random string
- Eve's goal: guess b (decide if the Test session's key was real or random).


+ Simple security model

Limitations

- Only 2 parties
- Only 1 session
- No information leakage allowed

+ BR93/BJM97 security model

- Multiple parties execute many sessions
- Two parties, Alice and Bob execute a session of a protocol
- Send: Eve controls all communication between parties.
- Corrupt: Eve can learn long-term secret keys
- RevealSessionKey
- Test: Eve picks a target session. Challenger flips a coin b. If b=0: give Eve real key If b=1: give Eve random string
- Eve's goal: guess b (provided that the session was fresh a.k.a. uncorrupted)

Fresh sessions in BR93/BJM97

- If Eve can reveal session keys and corrupt long term keys, which sessions ought to remain secure?
- A session π at party A is **fresh** if
 - No Corrupt(A)
 - No SessionKeyReveal(π)
 - No Corrupt(B) where B is the peer of A
 - No SessionKeyReveal(π') where
 π' is a matching session to π

Matching session: (incomplete) transcripts match

+ Signed Diffie–Hellman protocol

Alice

 Long-term key (pk_a, sk_a) ← Sig.KeyGen() Obtain pk_b

1.
$$x \leftarrow \$ \{1, ..., p-1\}$$

 $X \leftarrow g^{x}$
 $\sigma_{A} \leftarrow \text{Sig.Sign}(\text{sk}_{a}, X)$ X, σ_{A}

2. Sig.Verify(pk_B, Y, σ_B) $k_{AB} \leftarrow H(Y^x)$

1. $y \leftarrow \$ \{1, ..., p-1\}$ $Y \leftarrow g^y$ $\sigma_B \leftarrow Sig.Sign(sk_b, Y)$

Long-term key

Obtain pk_a

 $\underbrace{ \begin{array}{c} \textbf{Y, } \sigma_{\text{B}} \\ \textbf{2.} \end{array} \begin{array}{c} \text{Sig.Verify}(\text{pk}_{\text{A}}, \textbf{X}, \sigma_{\text{A}}) \\ k_{\text{AB}} \leftarrow H(\textbf{X}^{\text{y}}) \end{array} }$

Bob

 $(pk_{b}, sk_{b}) \leftarrow Sig.KeyGen()$

Not secure if **ephemeral key** ever revealed.

What if the randomness used in a session is leaked?

- Not reasonable to assume that Alice's computer is perfect, even if there's a wall around it.
- Weak randomness generation
 - Early versions of Netscape's PRNG were poorly seeded [Goldberg, Wagner 1995]
 - Debian's version of OpenSSL discarded most of the entropy used in PRNG [Bello 2008]
- PC compromised by spyware/ malware

Can we still achieve security even with weak randomness?

+ MQV-style protocols MQV, HMQV, NAXOS, CMQV, <u>UP</u>, SF, ...

Alice	Bob
 Long-term key a ←\$ {1,, p-1} A ← g^a Obtain pk_b 	 Long-term key b ←\$ {1,, p-1} B ← g^b Obtain pk_a
1. $x \leftarrow \$ \{1, \dots, p-1\}$	1. $y \leftarrow \$ \{1,, p-1\}$
$x \leftarrow g^{x}$ X	$Y \leftarrow g^y$
2. $Z1 \leftarrow (YB^{H(X)})^{x+a}$	2. $Z1 \leftarrow (XA)^{y+H(Y)b}$
$Z2 \leftarrow (YB)^{x+H(Y)a}$	$Z2 \leftarrow (XA^{H(X)})^{y+b}$
$k \leftarrow H(Z1, Z2, Alice, Bob, X, Y)$	$k \leftarrow H(Z1, Z2, Alice, Bob, X, Y)$

Secure even if at most one, but **not both**, of a party's session key and ephemeral key revealed after protocol completion

+ Security models for key exchange

BR93: Bellare-Rogaway (1993)

- Blake-Wilson–Johnson– Menezes (1997)
- Bellare–Pointcheval–Rogaway (2000)

- CK_HMQV: Krawczyk (2005)
- eCK: LaMacchia–Lauter– Mityagin (2007)

Composability?

- Vast majority of key exchange papers use "direct" security models with no composability theorems.
- CK02: UC version of CK01
- CHKLM05: weak corruptions only

+ Comparison of security models

Newer models add more adversarial powers to model more information leakage.

	BR93/BJM97	CK01	eCK
Send control all communication	~	~	v
Corrupt learn long-term secret key	~	~	v
SessionStateReveal reveal internal state of party	×	~	×
EphemeralKeyReveal learn short-term randomness	×	*	✓
SessionKeyReveal learn session keys	✓	•	✓

+ Which is the best model?

BR93/BJM97

 Doesn't allow leakage of any ephemeral secrets

CK01

- SessionStateReveal is sometimes ambiguously defined
- Attacks: key compromise impersonation

eCK

- EphemeralKeyReveal can't be called before session begins
- Can play "tricks" to achieve somewhat unnatural security

- CK01 and eCK formally and practically incomparable. [Cremers 2010]
- None include the "wider" scope of a real-world protocol such as certification/key registration, (re-)negotiation,
- Still a matter of debate as to the most appropriate definition(s) to use.

. . .

 eCK-like models most widely used

Existing QKD security models

Stand-alone definitions

- Only two parties (+ Eve)
- Assume authentication

Universal composability definition

Ben-Or, Horodecki, Leung, Mayers, Oppenheim (TCC 2005)

- In simplified version of Ben-Or-Mayers composability framework
- No information leakage
- Information-theoretic authentication

Definitions compatible with simulatability & composability frameworks

• e.g. Renner 2005

Quantum composability frameworks

- Ben-Or, Mayers 2004
- Fehr, Schaffner 2008
- Unruh 2004, 2009/10
- Maurer, Renner 20??

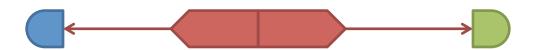
+ QKD in the language of classical authenticated key exchange

Goal

- Develop a unified security model that can be used to describe the security of:
 - Classical authenticated key agreement protocols
 - QKD with informationtheoretic authentication
 - QKD with computationally secure authentication

Benefits

- Directly compare qualitative properties of various classical and quantum AKE protocols
- QKD as a standard cryptographic primitive
- Formalization of "folklore" result that QKD with computational authentication is long-term secure as long as not broken before protocol completes
 [various position papers]
 [Müller-Quade, Unruh 2010]

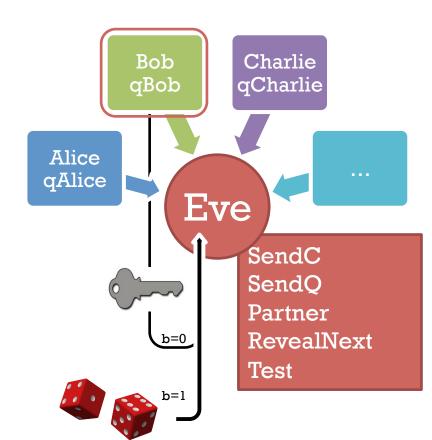

Prepare-sendmeasure QKD

BB84 six-state protocol

- Randomness:
 - Long-term authentication key
 - Basis choices
 - Data bits
 - Information reconciliation randomness
 - Privacy amplification randomness

Measure-only QKD

Ekert91 BBM92


- Randomness:
 - Long-term authentication key
 - Basis choices
 - Information reconciliation randomness
 - Privacy amplification randomness

Prepare-send-only QKD

Time-reversed [BHM96, Ina02] Measurement device-independent [LCQ12, BP12]

- Randomness:
 - Long-term authentication key
 - Basis choices
 - Data bits
 - Information reconciliation randomness
 - Privacy amplification randomness

+ Unified security model

- Multiple parties execute many sessions
- Two parties, Alice and Bob execute a session of a protocol
- SendC, SendQ: Eve controls all communication between parties.
- Partner: Eve can learn long-term keys or randomness
- RevealNext: Eve can learn randomness before it's used
- Test: Eve picks a target session. Challenger flips a coin b. If b=0: give Eve real key If b=1: give Eve random string
- Eve's goal: guess b (provided that the session was fresh)
- Session output specifies freshness condition

+ Adversary types

- Short-term security: Bounds on Eve:
 - t_c: classical runtime
 - t_q: quantum runtime
 - m_q: quantum memory
- Long-term security:
 - (t_c, t_q, m_q)-bounded Eve₁ interacts with the protocol to produce a cq transcript
 - 2. Unbounded quantum Eve₂ operates on transcript

- Can interpolate from
 - purely classical Eve: $t_c = poly, t_q = 0, m_q = 0$
 - reasonable upper bound on today's quantum Eve: $t_c = poly, t_q = 10^3, m_q = 10^3$
 - poly quantum Eve:
 t_q = poly(λ), m_q = poly(λ)
 - unbounded quantum Eve: $t_q = \infty, m_q = \infty$

Mirrors UC framework long-term security definitions of Müller-Quade and Unruh (2010).

+ Protocol comparison

Protocol	Signed Diffie-	UP	BB84	\mathbf{EPR}	BHM96
Protocol	Hellman [CK01]	[Ust09]	[BB84]	[Eke91]	[BHM96, Ina02]
Protocol type	classical	classical	quantum	quantum	quantum
	classical	classical	prepare-send-measure	measure-only	prepare-send-only
Security model in which	CK01 [CK01],	eCK [LLM07],	this nonon	this name	this nonen
can be proven secure	this paper	this paper	this paper	this paper	this paper
Randomness revealable	\times static key	at most 1 of	\times static key	\times static key	\times static key
before protocol run?	\times ephemeral key	static key,	\times basic choice	\times basis choice	\times basis choice
		ephemeral key	\times data bits		\times data bits
			\times info. recon.	\times info. recon.	\times info. recon.
			\times priv. amp.	\times priv. amp.	\times priv. amp.
Randomness revealable	✓ static key	at most 1 of	✓ static key	\checkmark static key	\checkmark static key
after protocol run?	\times ephemeral key	static key,	\checkmark basis choice	\checkmark basis choice	\checkmark basis choice
		ephemeral key	\times data bits		\times data bits
			\checkmark info. recon.	✓ info. recon.	\checkmark info. recon.
			✓ priv. amp.	✓ priv. amp.	✓ priv. amp.
Short-term security	computational	computational	computational or	computational or	computational or
	assumption	assumption	information-theoretic	information-theoretic	information-theoretic
Long-term security	×	×	assuming short-term-	assuming short-term-	assuming short-term-
			secure authentication	secure authentication	secure authentication

+ Questions for QKD

- Design MQV-style prepare-and-send protocol secure even when data bits are revealed
 - Maybe only computationally secure in that case
- Leakage-resilient cryptography provides more fine-grained description of information leakage
 - e.g. reveal arbitrary function f(x) of internal state x, where |f(x)| bounded per session or overall
 - Prove security of QKD against a class of leakage functions, then argue that side-channels in a real-world protocol are modeled by that class of leakage functions