Quantum repeaters using frequencymultiplexed quantum memories

UNIVERSITY OF

E. Saglamyurek¹, N. Sinclair¹, H. Mallahzadeh¹, J. Jin¹, J. Slater¹, D. Oblak¹, F. Bussières^{1*}, M. George², R. Ricken², W. Sohler², and W. Tittel¹

¹Institute for Quantum Information Science, University of Calgary, Canada ²Institut für Angewandte Physik, University of Paderborn, Germany *Now Group of Applied Physics-Optics, University of Geneva, Switzerland

- Photon-echo quantum memory (AFC) in RE crystals
- Broadband waveguide quantum memory for entangled photon
- Multi-mode storage and read-out on demand in frequency space
- Conclusion

- Photon-echo quantum memory (AFC) in RE crystals
- Broadband waveguide quantum memory for entangled photon
- Multi-mode storage and read-out on demand in frequency space
- Conclusion

- Photon-echo quantum memory (AFC) in RE crystals
- Broadband waveguide quantum memory for entangled photon
- Multi-mode storage and read-out on demand in frequency space
- Conclusion

Rare-earth-ion doped crystals

- naturally trapped emitters with free atom like spectra
- transitions in the visible and at telecom wavelength
- at 4 K: $\Gamma_{hom} \approx 50 \text{ Hz} 100 \text{ kHz}$, T₂ up to 4 ms
- ground state coherence up to 30 s
- $^-\,\Gamma_{inhom} \approx 500~MHz 500~GHz$

-> capacity for long-term storage over large spectral width

Photon-echo quantum memory (AFC)

1. Preparation of an atomic frequency comb

2. Absorption of a photon -> fast dephasing

$$\left|\psi\right\rangle = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} c_{j} e^{-i2\pi\Delta_{j}t} e^{ikz_{j}} \left|g_{1} \dots e_{j} \dots g_{N}\right\rangle$$

Experiments: Geneva, Lund, Paris, Calgary, Barcelona, Hefei

[/]comb

- 3. Phase matching $\phi(z) = -2kz$ enables backwards recall
- 4. Rephasing at $t_R = 1/v_{comb}$ with $2\pi\Delta_j t_R = m 2\pi$
- 5. Reversible mapping of optical coherence onto spin coherence allows recall on demand
 - -> Reemission of light with unity efficiency and fidelity, very good broadband and multi-mode storage capacity

Hesselink et al., PRL (1979); Afzelius et al., PRA (2009); De Riedmatten et al., Nature. (2008); Afzelius et al., PRL (2010), Bonarota et al., New J. Phys 2011.

Ti:Tm:LiNbO₃ waveguides

<u>Thulium</u>

- 795 nm zero-phonon absorption line, $\Gamma_{\rm hom}$ ~200 kHz @3K
- large, polarization and wavelength dependent optical depth (α~2.2/cm @ 3K & 795.5 nm)
- C_3 axis C_3 - axis C_3

- T₁(³H₄)=80 μs

- optical pumping into magnetic ground-state sublevels (T₁~sec @ B=150G & T=3K)

LiNbO₃:

- (no inversion symmetry -> Stark shifting of resonance lines (for CRIB quantum memory))
- "telecommunication" material, waveguide fabrication well mastered

Waveguide

- large Rabi frequencies
- (fast switching of large electric fields using closely spaced electrodes (for CRIB quantum memory))
- simplified integration with fibre optic components and into networks

N. Sinclair, WT et al., J. Lumin. (2010), C. Thiel et al., J. Lumin. (2010)

Waveguide quantum memory

Broadband waveguide quantum memory for entangled photons BSM BSM BSM **BSM BSM OM OM** QM **OM OM** challenge: match bandwidth of entangled photons with memory

Briegel *et al.*, Phys. Rev. Lett (1998); Hammerer *et al.*, Rev. Mod. Phys (2010); Simon *et al.* Rev. Mod. Phys. (2011)

-5 GHz broad grating, generated via laser sideband chirping

- -146 MHz tooth separation -> 7 ns storage time
- total system efficiency 0.2% (coupling loss, Finesse of two, sinusoidal AFC, non-uniform AFC, etc.)

Broadband waveguide quantum memory for entangled photons: schematics

free-space and telecom fibres

- qubit analyzers allow projections onto superpositions of |e> and |l>

- measurement without and with memory -> ρ_{in} , ρ_{out}

	Storing one out of two entangled photons						
	Entanglement of formation	Input-Output Fidelity	Purity	Fidelity with $ \phi^+\rangle$	CHSH-Bell parameter S		
$ ho_{\text{in}}$	0.644±0.042	0.954±0.029	0.757±0.024	0.862±0.015	2.379±0.034		
ρ_{out}	0.65±0.11		0.763±0.059	0.866±0.039	2.25±0.06		

- no measurable degradation of (post-selected) entanglement during storage
- a small unitary transformation
- initial (and recalled) state have limited purity and fidelity with target
- experimental violation of CHSH Bell inequality (S_{LHV}≤2)

E. Saglamyurek, WT et al., Nature (2011). Clausen et al., Nature (2011)

	Storing	g one ou	t of two	entangled	photons
	Entanglement of formation	Input-Output Fidelity	Purity	Fidelity with $ \phi^+>$	CHSH-Bell parameter S
$ ho_{\text{in}}$	0.644±0.042	0.954±0.029	0.757±0.024	0.862±0.015	2.379±0.034
ρ_{out}	0.65±0.11		0.763±0.059	0.866±0.039	2.25±0.06

• N⁽¹⁾ • N⁽²⁾ • N⁽²⁾

a of the AFC com

Photon-Crystal

CHSH = 2.64

- no measurable degradation of (post-selected) entanglement during storage
- a small unitary transformation
- initial (and recalled) state have limited purity and fidelity with target
- experimental violation of CHSH Bell inequality ($S_{LHV} \leq 2$)
- similar results in the Gisin group

E. Saglamyurek, WT et al., Nature (2011). Clausen et al., Nature (2011)

Afzelius et al., PRL (2010)

Multi-mode quantum repeater: temporal versus frequency modes

Multi-mode quantum repeater: temporal versus frequency modes

Frequency detuning (MHz)

(coupling of frequency to different storage times for simplified

- AFC quantum memory in Tm:LiNbO₃ is perfectly suited for frequency multiplexing (Γ_{inh} =300 GHz)

- generation of ten, 100 MHz wide frequency bins and simultaneous storage of 10 ns long attenuated laser pulses at respective frequencies

- recall followed by frequency shifting and filtering at reference frequency v_0

Multi-mode storage and read-out on demand in frequency space

Quantum memory is supplemented with phase modulator and cavity for ondemand frequency selective read-out

Johnson et al., Opt. Lett (2009); Palittapongarnpim et al., Rev. Sci. Instrum. (2012).

QC2 Lab

Multi-mode storage and on-demand frequency selective recall

- AFC quantum memory stands out through its large bandwidth and MM capacity
- Demonstration of
 - entanglement storage
 - MM storage & recall on demand
 - real-world Bell-state measurement (talk by J. Slater on MDI-QKD)
- Provided storage efficiency can be increased (using impendence matched cavity), this allows memory-enhanced linear optics QIP
- For quantum repeater, storage times in excess of 100 μsec will be required (coherencetransfer to long-lived ground states)

