Quantum Steering: Experiments and Applications

Devin H. Smith

Geoff Gillett, Marcelo P. de Almeida, Till J. Weinhold, Alessandro Fedrizzi, Thomas Gerrits*, Brice Calkins*, Adrianna Lita*, Sae Woo Nam*, Cyril Branciard, Howard G. Wiseman ${ }^{\dagger}$ and Andrew G. White

Introduction

1. What is steering?
2. Why steering?
3. Demonstrating steering
4. Using steering

Quantum simulation \& emulation

Nature Chemistry 2, IO6 (2010)
Physical Review Letters 104, 153602 (2010)
New Journal of Physics I 3, 075003 (201 I)
Nature Communications 3, 882 (2012)

Quantum computation

Nature Physics 5, I 34 (2009)
Journal of Modern Optics 56, 209 (2009)
New Journal of Physics 12083027 (2010) Physical Review Letters 106, I0040I (201I)

Quantum photonics

Optics Express 19, 55 (201 I)
Journal of Modern Optics 58, 276 (201 I)
Optics Express 19, 22698 (201I)

Quantum foundations

Physical Review Letters 104, 080503 (2010) Proceedings of the National

Academy of Sciences 108, 1256 (2011) New Journal of Physics I3, 053038 (201I) Physical Review Letters 106, 200402 (2011) Nature Communications 3, 625 (2012)

Steering

Fundamental science

Bipartite entangled states

Applications

Increasing entanglement and device independence

Steering as a game

1. Bob gives Alice a list of possible measurements he will perform
2. Alice sends Bob a state
3. Bob tells Alice which measurement from the list he will do
4. Alice predicts Bob's measurement outcome

How often can Alice win at this game?

Wiseman, Jones and Doherty Phys. Rev. Lett. 98140402 (2007)

Steering as a game

1. Bob gives Alice a list of possible measurements he will perform
2. Alice sends Bob a state
3. Bob tells Alice which measurement from the list he will do
4. Alice predicts Bob's measurement outcome

How often can Alice win at this game?

Wiseman, Jones and Doherty Phys. Rev. Lett. 98140402 (2007)

Classical Optimum

Two bases/2D System

$$
P(\operatorname{win})=\left(\langle 0|\left(\cos \frac{\pi}{8}|0\rangle+\sin \frac{\pi}{8}|1\rangle\right)\right)^{2}=\frac{1}{4}(2+\sqrt{2}) \approx 0.85
$$

Classical Optimum

Three bases/2D System

$$
P(\text { win })=2\left(1-\frac{1}{\sqrt{3}}\right)
$$

Classical Optimum

Infinite bases/2D System

Now any random pure state is optimal for Alice:

$$
P(\text { win })=\iint_{\theta>0}\langle H \mid \psi\rangle \mathrm{d} \psi=\frac{3}{4}
$$

Quantum Optimum

Still 2D System

Alice sends Bob half of a maximally entangled state. When Bob declares his basis choice, Alice uses it to make a measurement. She can "steer" him perfectly
"It is rather discomforting that the theory should allow a system to be steered or piloted into one or the other type of state at the experimenter's mercy in spite of his having no access to it" - E. Schrödinger

Convince EPR

A. Einstein

B. Podolsky

N. Rosen

You could convince a skeptical second party of "spooky action at a distance" by steering their outcomes

Photo deskarati.com

Nonlocality

No-signalling	Steerability "Perfect"	Uncertainty Perfect
Quantum Classical	Perfect	
		Perfect

Oppenheim and Wehner, Science 330, 10721074 (2010).

Convince your bank

You can convince your bank that you share entanglement with them even if they think you're a theorist.

Certify a channel

THE QUANTUM CHANNEL

One-sided-device-independent Quantum Key Distribution b Trusted Node

Untrusted end users
C Branciard et al., Phys. Rev. A 85, 010301(R) (2012)

So why do we care?

- Alice can convince Bob of entanglement even if he doesn't believe in it.
- Alice can convince Bob of entanglement even if he doesn't trust her to operate experimental apparatus
- We can use it to certify quantum channels for use for other quantum communication primitives
- 1sDI-QKD

Alice is restricted by her loss!

So why do we care?

- Alice can convince Bob of entanglement even if he doesn't believe in it.
- Alice can convince Bob of entanglement even if he doesn't trust her to operate experimental apparatus
- We can use it to certify quantum channels for use for other quantum communication primitives
- 1sDI-QKD

Alice is restricted by her loss!

Steering Inequalities

Linear

$$
\begin{gathered}
S_{N} \equiv \frac{1}{n} \sum_{k=1}^{n}\left\langle A_{k} \hat{\sigma}_{k}^{B}\right\rangle \leqslant C_{n}(\eta) \\
C_{\infty}(\eta)=1-\frac{\eta}{2}
\end{gathered}
$$

EG Cavalcanti et al. Phys. Rev. A 80, 032112 (2009)

Steering Inequalities

Quadratic

$$
S_{N \in\{2,3\}} \equiv \sum_{i=1}^{N} \sum_{a= \pm 1,0} P\left(A_{i}=a\right)\left\langle\hat{B}_{i}\right\rangle_{A_{i}=a}^{2} \leqslant 1
$$

Error tolerance and loss

Alice will lose some photons. Solution?

1. Allow her a third outcome
2. Force her to choose an outcome

Steering as a game

1. Bob gives Alice a list of possible measurements he will perform
2. Alice sends Bob a state
3. Bob tells Alice which measurement from the list he will do
4. Alice predicts Bob's measurement outcome

How often can Alice win at this game?

Wiseman, Jones and Doherty Phys. Rev. Lett. 98140402 (2007)

Why does loss matter?

Alice can use "loss" events to hide inconvenient results from Bob even when she doesn't have entanglement.

By losing $\frac{N-1}{N}$ of the photons she can "steer" perfectly

Why does loss matter?

Alice can use "loss" events to hide inconvenient results from Bob even when she doesn't have entanglement.

By losing $\frac{N-1}{N}$ of the photons she can "steer" perfectly

Error tolerance and loss

Alice will lose some photons. Solution?

1. Allow her a third outcome
2. Force her to choose an outcome

Error tolerance and loss

Alice will lose some photons. Solution?

1. Allow her a third outcome
2. Force her to choose an outcome

Quadratic Inequalities

Loss tolerance

Linear Inequalities

Loss tolerance

A.J. Bennet et al., Phys. Rev. X 2, 031003 (2012)

Comparison

So why try it now?

After 70 years, why are we steering states now?

So why try it now?

So why try it now?

After 70 years, why are we steering states now?
Transition Edge Sensors are approximately twice as efficient as standard SPADs.

Apparatus diagram

Experimental results

$$
\begin{gathered}
S_{2}=1.1410 \pm 0.0014 \ggg 1, \\
S_{3}=1.7408 \pm 0.0017 \ggg 1
\end{gathered}
$$

DH Smith, G Gillett et al., Nat. Commun. 3:625 (2012)

Experimental results, con't

Loss tolerance

Griffith University's experimental results

AJ Bennet et al., Phys. Rev. X 2, 031003 (2012).

And a third result from Vienna

Alice

$S_{3}=1.049 \pm 0.002 \gg 1$
B Wittmann, S Ramelow et al., New J. Phys. 14, 053030 (2012)

Compare and contrast

	UQ	Griffith	Vienna
Inequality	Quadratic	Linear	Quadratic
Efficiency $(\%)$	62	$13-35$	38
Nonlocality	No	No	Yes
Violation (σ)	$67-200$	$2.6-5.3$	25

DH Smith, G Gillett et al., Nat. Commun. 3:625 (2012)
AJ Bennet et al., Phys. Rev. X 2, 031003 (2012)
B Wittmann, S Ramelow et al., New J. Phys. 14, 053030 (2012)

Corrections for Bob's imperfections

It turns out that

$$
S_{N} \equiv \sum_{i=1}^{N} \sum_{a= \pm 1,0} P\left(A_{i}=a\right)\left\langle\hat{B}_{i}\right\rangle_{A_{i}=a}^{2} \leqslant 1
$$

only holds if \hat{B}_{i} are perfect.
They aren't. They're neither orthogonal nor projective.

Corrections for Bob's imperfections

It turns out that

$$
S_{N} \equiv \sum_{i=1}^{N} \sum_{a= \pm 1,0} P\left(A_{i}=a\right)\left\langle\hat{B}_{i}\right\rangle_{A_{i}=a}^{2} \leqslant 1
$$

only holds if \hat{B}_{i} are perfect.
They aren't. They're neither orthogonal nor projective.

Nonorthogonal measurements

If the \hat{B}_{i} aren't orthogonal, the classical limit goes up because results in different bases are correlated.

$$
S_{N} \leqslant 1+(N-1) \epsilon
$$

where $\epsilon=\vec{b}_{i} \cdot \vec{b}_{j}$.
In our experiment, $\epsilon_{3}=0.0134 \pm .0007$ and $\epsilon_{2}=(1.3 \pm 1.5) \times 10^{-4}$

Nonorthogonal measurements

|H)

|V)

If the \hat{B}_{i} aren't orthogonal, the classical limit goes up because results in different bases are correlated.

$$
S_{N} \leqslant 1+(N-1) \epsilon
$$

where $\epsilon=\vec{b}_{i} \cdot \vec{b}_{j}$.
In our experiment, $\epsilon_{3}=0.0134 \pm .0007$ and
$\epsilon_{2}=(1.3 \pm 1.5) \times 10^{-4}$

Non-ideal Projection

If there is a systematic bias in the B_{i}, the classical limit goes up due to that bias. dominant source of bias in our experiment was differential loss between the detectors, which leads to

We had $\frac{\eta>}{\eta<}=1.0115 \pm 0.0007$

Non-ideal Projection

If there is a systematic bias in the B_{i}, the classical limit goes up due to that bias. The dominant source of bias in our experiment was differential loss between the detectors, which leads to

$$
S_{N} \leqslant \frac{\eta_{>}}{\eta_{<}}[1+(N-1) \epsilon]
$$

We had $\frac{\eta>}{\eta_{<}}=1.0115 \pm 0.0007$

Non-ideal Projection

If there is a systematic bias in the B_{i}, the classical limit goes up due to that bias. The dominant source of bias in our experiment was differential loss between the detectors, which leads to

$$
S_{N} \leqslant \frac{\eta_{>}}{\eta_{<}}[1+(N-1) \epsilon]
$$

We had $\frac{\eta_{>}}{\eta_{<}}=1.0115 \pm 0.0007$

Larger Hilbert space

```
What happens if additional degrees of freedom are sent to Bob?
We don't rigorously know.
We conjecture that a squashing argument like one used in QKD will show
that this is an "easy" problem to solve in two bases
Randomized outcomes when multiple photons are detected is the hopeful
solution
It is known that such a squashing argument doesn't apply to 3 bases
```

T Moroder et al.,Phys. Rev. A 81, 052342 (2010).
N Baudry, private communication

Larger Hilbert space

```
What happens if additional degrees of freedom are sent to Bob?
We don't rigorously know.
We conjecture that a squashing argument like one used in QKD will show
that this is an "easy" problem to solve in two bases
Randomized outcomes when multiple photons are detected is the hopeful
solution
It is known that such a squashing argument doesn't apply to 3 bases
```

T Moroder et al.,Phys. Rev. A 81, 052342 (2010).
N Baudry, private communication

Larger Hilbert space

What happens if additional degrees of freedom are sent to Bob?
We don't rigorously know.
We conjecture that a squashing argument like one used in QKD will show that this is an "easy" problem to solve in two bases Randomized outcomes when multiple photons are detected is the hopeful solution
It is known that such a squashing argument doesn't apply to 3 bases

T Moroder et al.,Phys. Rev. A 81, 052342 (2010)
N Baudry, private communication

Larger Hilbert space

What happens if additional degrees of freedom are sent to Bob?
We don't rigorously know.
We conjecture that a squashing argument like one used in QKD will show that this is an "easy" problem to solve in two bases
Randomized outcomes when multiple photons are detected is the hopeful solution

It is known that such a squashing argument doesn't apply to 3 bases

T Moroder et al.,Phys. Rev. A 81, 052342 (2010).
N Baudry, private communication

Conclusion

We correct our bounds, finding that, classically:

$$
\begin{aligned}
& S_{2 c}=1.0291 \pm 0.0019 \\
& S_{3 c}=1.062 \pm 0.003
\end{aligned}
$$

So we have violated a 2 -setting steering inequality by 48σ and a 3 -setting inequality by over 200σ.

$$
\begin{aligned}
& S_{2}=1.1410 \pm 0.0014 \gg 1.0291 \pm 0.0019 \\
& S_{3}=1.7408 \pm 0.0017>1.0291 \pm 0.0019
\end{aligned}
$$

Corrections

Device independent QKD

C Branciard et al., Phys. Rev. A 85, 010301(R) (2012), Ma and Lütkenhaus, Quantum Information and Computation 12, 0203-0214 (2012)

One-Sided-Device-Independent Quantum Key Distribution

Apparatus Diagram

Rates

$$
r=\eta_{A}\left[1-h\left(Q_{1}^{p s}\right)\right]-h\left(Q_{2}\right)-(1-q)
$$

where
η_{A} Alice's heralding efficiency,
$h(\cdot)$ the binary entropy
Q_{i} the quantum bit error rate in the $i^{\text {th }}$ basis
ps indicating post-selection on coincidence
q the orthogonality of Bob's measurements

$$
\left(q=-\log _{2} \max _{z, x}\left\|\sqrt{B_{1}^{z}} \sqrt{B_{2}^{x}}\right\|_{\infty}^{2}\right)
$$

Rates

$$
r=\eta_{A}\left[1-h\left(Q_{1}^{p s}\right)\right]-h\left(Q_{2}\right)-(1-q)
$$

This leads to a required heralding efficiency of $>65.9 \%$

Requirements

Advertisements

- If you have experiments that require high efficiency, I want to hear about them
- If you have potential PhD candidates that would like to work on this kind of thing, Andrew White wants to hear about it
- If you want to solve our squashing problems, please do

Summary

1. Steering of Quantum States is of practical and philosophical significance
2. Steering has been demonstrated in several different contexts recently
3. We are implementing a QKD protocol based on steering

Thank you for your attention

Questions?

Devin H Smith (UQ)

