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Introduction Results
The experimental violation of Bell inequalities allows for communication with security A great challenge in this implementation is the compensation of random phase fluctuations
guaranteed by the impossibility of signaling at superluminal speeds [1,2]. This type of caused by the environment in long interferometers. We solved this by injecting a second laser
secure communication requires distributing quantum entanglement over long distances. into the system to provide real-time feedback for the field programmable gate array (FPGA)
The most common method to do it in optical fibers is based on Franson's configuration [3] based control electronics [9].
[See Fig. 1], which has an intrinsic geometrical loophole (post-selection of coincident
detections between Alice and Bob), and therefore, cannot rule out all possible local ()
explanations for the apparent violation of the Bell CHSH inequality [4, 5]. © 950l
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Where the probability coincidence distributions are = ol
Q
0
E(®y, Pg) = P11(Pa, Pp) + Py (Pa, Pg) - P12(Pa, Pp) -P21 (P4, D) (0)
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Fig 4: Net Coincident Counts vs Delay-line Position

The violation of the Bell CHSH inequality was performed with the delay line set at the center
of the two-photon interference pattern, the active phase control is kept active and a piezo-
mounted mirror slowly modulated. The phase control system is used to switch between Bob's

Fig.1: Franson Bell Test Configuration two phase settings 0 and m/2. And the measured curves across all output combinations are
displayed in Fig. 5(a)-(d).

On the practical side, this loophole can be exploited by eavesdroppers to break the security
of the communication [6].
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Here we report the first experimental violation of the Bell CHSH inequality with genuine U
energy-time entanglement (i.e., free of the post-selection loophole) distributed through -% 1
more than 1 km of optical fibers. O P
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In order to remove the post-selection loophole we replace the original scheme with (c)
two unbalanced interferometers in the “hug" configuration introduced in [5] [See Fig. 2], E
which has been demonstrated in table-top experiments [7, 8]. E
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Fig.2: Genuine Energy-Time Hug Bell Test Configuration. LY B9 0} Edg 4 E(4 b )

Bell CHSH Ineq. Corr. Functions
The degenerate 806 nm photon pairs are created in a PPKTP non-linear crystal through the

process of spontaneous parametric down-conversion. The fundamental uncertainty in the
emission time of the down-converted photons sets up as indistinguishable the possible
paths they can take in both equally unbalanced interferometers [5]. When this condition is
satisfied, the Bell state

Fig.5: Coincidence interference curves and Bell CHSH inequality violation. (a) and (b)
correspond to the cases where @5 =0 and (c) and (d) to the cases where ®gz= 2.

1 _ For the maximum violation of the Bell CHSH inequality the phase settings are ¢, = /4,
) = \/—§(|SS) + e (PaTPB)|LL) dp =0, = —1/4y ¢pg = m/2 [7], which gives us the theoretical value S = 2+/2.

The measured average raw visibility was (84.36 + 0.47)%, and the corresponding violation
is generated, where S and L indicate the short and long arms, respectively. The long-short of the Bell CHSH inequality in this case yields S = 2.39 &+ 0.12, surpassing the classical limit
paths length differences are L, — S, = Lg — Sg = 2m. The experimental setup used is by 3.25 standard deviations.
depicted in Fig. 3.

We have successfully demonstrated the long-distance distribution of genuine energy-
time entanglement over 1 km long optical fibers. These results represent an important
step towards secure quantum communications in optical fibers
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Fig.3: Experimental Setup.



