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motivation

From a theoretically point of  view, a QKD system is rather simple. For 
instance, in the BB84 protocol:

1 00 1

Signals sent by Alice: 
Bob’s measurements: 

Bob’s results: 
Sifted bits: 

C.H. Bennett and G. Brassard, Proc. IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, 
New York), p. 175 (1984).
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motivation

From a theoretically point of  view, a QKD system is rather simple. For 
instance, in the BB84 protocol:

1 00 1

Signals sent by Alice: 
Bob’s measurements: 

Bob’s results: 
Sifted bits: 

C.H. Bennett and G. Brassard, Proc. IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, 
New York), p. 175 (1984).

P.W. Shor and J. Preskill, PRL 85, 441 (2000).

Secret key rate:

K / 1� h(ebit)� h(ephase)
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motivation

In practice, however, the situation looks less simple. 

QPN 5505 commercial QKD system from MagiQ Technologies (Image taken from http://www.vad1.com)
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motivation

In practice, however, the situation looks less simple. 

QPN 5505 commercial QKD system from MagiQ Technologies (Image taken from http://www.vad1.com)

For instance:

• Alice can emit signals that contain 
more than one photon prepared in 
the same polarisation state.

• Bob’s detectors can output a 
double ``click’’ due, for example, 
to dark counts.
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Example: Photon number splitting (PNS) attack.

motivation

N photons 
QND OA Loss ? N=1 

N>1 N-1 

N=1 

Quantum Memory 

Eve 
N=0 

Alice
Bob

B. Huttner et al., PRA 51, 1863 (1995); G. Brassard et al., PRL 85, 1330 (2000). 
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Example: Photon number splitting (PNS) attack.

motivation

N photons 
QND OA Loss ? N=1 

N>1 N-1 

N=1 

Quantum Memory 

Eve 
N=0 

Alice
Bob

B. Huttner et al., PRA 51, 1863 (1995); G. Brassard et al., PRL 85, 1330 (2000). 

Eve has full information about the part of  the key 
generated from multi-photon signals

K  p
exp

� p
multi

N > 1

N = 1

N = 0

click
no click
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Example: Exploiting double-clicks (if  Bob discards them).

motivation
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Example: Exploiting double-clicks (if  Bob discards them).

motivation

As a result, Bob’s detection efficiency is basis dependent.

Alice

Eve

Classical
light

Bob

Double click, discarded 

Eve has full information 
about the key 
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Example: Exploiting double-clicks (if  Bob discards them).

motivation

As a result, Bob’s detection efficiency is basis dependent.

Alice

Eve

Classical
light

Bob

Double click, discarded 

Eve has full information 
about the key 

There is a gap between theory and practice. Theorists have to develop security proofs 
that can be applied to the experimental realisations.
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Characterisation of experimental 
components
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Characterisation of practical devices 

Phase-randomised weak coherent pulses:

Tuesday, August 6, 13



Characterisation of practical devices 

Phase-randomised weak coherent pulses:

Coherent states:                                                            |↵ei�i = e�|↵|2/2
1X

n=0

(↵ei�)np
n!

|ni

|ni = 1p
n!
(a†)n|0i
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Characterisation of practical devices 

Phase-randomised weak coherent pulses:

Coherent states:                                                            |↵ei�i = e�|↵|2/2
1X

n=0

(↵ei�)np
n!

|ni

|ni = 1p
n!
(a†)n|0i

If  the phase is randomised, we have: 

⇢ =
1

2⇡

Z

�
|↵ei�ih↵ei�|d� = e�|↵|2

1X

n=0

|↵|2n

n!
|nihn| = e�µ

1X

n=0

µn

n!
|nihn|

µ = |↵|2
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Characterisation of practical devices 

0

0.25

0.5

0.75

1

n=0 n=1 n=3 n=4 n=5

Photon number statistics 
when the intensity  µ = 0.1

Phase-randomised weak coherent pulses:

Coherent states:                                                            |↵ei�i = e�|↵|2/2
1X

n=0

(↵ei�)np
n!

|ni

|ni = 1p
n!
(a†)n|0i

If  the phase is randomised, we have: 

⇢ =
1

2⇡

Z

�
|↵ei�ih↵ei�|d� = e�|↵|2

1X

n=0

|↵|2n

n!
|nihn| = e�µ

1X

n=0

µn

n!
|nihn|

µ = |↵|2
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Characterisation of practical devices 

The BB84 signals can then be described as:

⇢i = e�µ
1X

n=0

µn

n!
|niihni|

with i 2 {H,V,+45�,�45�}

|nii =
1p
n!
(a†i )

n|0iwith
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Characterisation of practical devices 

The BB84 signals can then be described as:

⇢i = e�µ
1X

n=0

µn

n!
|niihni|

with i 2 {H,V,+45�,�45�}

|nii =
1p
n!
(a†i )

n|0iwith

The creation operators       can be expressed as a function of  two creation operators            
associated to orthogonal polarisations:

ai b1, b2

a†H =
1p
2

⇣
b†1 + b†2

⌘

a†V =
1p
2

⇣
b†1 � b†2

⌘

a†+45� =
1p
2

⇣
b†1 + ib†2

⌘

a†�45� =
1p
2

⇣
b†1 � ib†2

⌘

creation operators
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Characterisation of practical devices 

The BB84 signals can then be described as:

⇢i = e�µ
1X

n=0

µn

n!
|niihni|

with i 2 {H,V,+45�,�45�}

|nii =
1p
n!
(a†i )

n|0iwith

The creation operators       can be expressed as a function of  two creation operators            
associated to orthogonal polarisations:

ai b1, b2

a†H =
1p
2

⇣
b†1 + b†2

⌘

a†V =
1p
2

⇣
b†1 � b†2

⌘

a†+45� =
1p
2

⇣
b†1 + ib†2

⌘

a†�45� =
1p
2

⇣
b†1 � ib†2

⌘

creation operators

|1Hi = a†H|0i =
1p
2
(|1, 0i+ |0, 1i)

|1Vi = a†V|0i =
1p
2
(|1, 0i � |0, 1i)

|1+45�i = a†+45� |0i =
1p
2
(|1, 0i+ i|0, 1i)

|1�45�i = a†�45� |0i =
1p
2
(|1, 0i � i|0, 1i)

single photon components
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Characterisation of practical devices 
Beam-splitters (BS):

There are two input modes and two output 
modes

If  we neglect for the moment absorption and other imperfections:

a c

b

d

✓
a†

b†

◆
= ei�

✓
tei�t rei�r

�re�i�r te�i�t

◆✓
c†

d†

◆
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Characterisation of practical devices 
Beam-splitters (BS):

There are two input modes and two output 
modes

If  we neglect for the moment absorption and other imperfections:

a c

b

d

✓
a†

b†

◆
= ei�

✓
tei�t rei�r

�re�i�r te�i�t

◆✓
c†

d†

◆

✓
a†

b†

◆
=

1p
2

✓
1 1
�1 1

◆✓
c†

d†

◆
50:50 BS
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Characterisation of practical devices 

Modelling the losses in the quantum channel (beam-splitter):
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Characterisation of practical devices 

Modelling the losses in the quantum channel (beam-splitter):

where                                      , with:

a c

b

d

⌘channel = 10�
↵d
10

    represents the loss coefficient of  the channel measured in dB/km (e.g. in an optical fibre                                 
                dB/km)

    is the transmission distance measured in km.

↵
↵ = 0.2

d

✓
a†

b†

◆
=

✓ p
⌘channel

p
1� ⌘channel

�
p
1� ⌘channel

p
⌘channel

◆✓
c†

d†

◆

a† =
p
⌘channelc

† +
p

1� ⌘channeld
†

b† = �
p

1� ⌘channelc
† +

p
⌘channeld

†

|0i
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Characterisation of practical devices 

Polarised beam-splitters (PBS):
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Characterisation of practical devices 

Polarised beam-splitters (PBS):

Separate polarisation into spatial 
modes

a cH H

a

d

V

V

a†H = c†H

a†V = d†V
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Characterisation of practical devices 

Polarised beam-splitters (PBS):

Separate polarisation into spatial 
modes

a cH H

a

d

V

V

a†H = c†H

a†V = d†V

Half  wave plate (HWP):

Performs a polarisation transformation

a b

✓
a†+45�

a†�45�

◆
=

e�i⇡/4

p
2

✓
1 i
1 �i

◆✓
b†+45�

b†�45�

◆

a†+45� = b†V

a†�45� = �ib†H
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Characterisation of practical devices 

Threshold detectors:

They provide only two possible outcomes:

- “Click”: At least one photon is detected

- “No click”: No photon is detected 

They are characterised by their detection efficiency         , their dark count rate        
(which is, to good approximation, independent of  the incoming signals), their dead-time, 
afterpulses, ....

⌘det pdark

Tuesday, August 6, 13



Characterisation of practical devices 

Threshold detectors:

They provide only two possible outcomes:

- “Click”: At least one photon is detected

- “No click”: No photon is detected 

They are characterised by their detection efficiency         , their dark count rate        
(which is, to good approximation, independent of  the incoming signals), their dead-time, 
afterpulses, ....

⌘det pdark

D
click

= 1�D
noclick

For simplicity, if  we only 
consider their detection 
efficiency and dark count rate       

D
noclick

= (1� p
dark

)
1X

n=0

(1� ⌘
det

)n|nihn|
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Characterisation of practical devices 

Example: BB84 receiver.
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Characterisation of practical devices 

Example: BB84 receiver.

Passive receiver:

PBS50:50 BS

PBS

HWP

|0i

H

V

+45

-45
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Characterisation of practical devices 

Example: BB84 receiver.

Passive receiver:

PBS50:50 BS

PBS

HWP

|0i

H

V

+45

-45 Active receiver:

Polarisation 
shifter

PBS
H / -45

V / +45
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Characterisation of practical devices 

Example: BB84 receiver.

D
click

= 1�D
noclick

If  we consider, for the moment, that all detectors have the same efficiency:

Polarisation 
shifter

PBS

BS
⌘B = ⌘det⌘s

      : Transmittance of the optical components within Bob’s 
measurement device and the detector efficiency
⌘B

|0i

D
noclick

= (1� p
dark

)|0ih0|

Passive receiver:

PBS50:50 BS

PBS

HWP

|0i

H

V

+45

-45 Active receiver:

Polarisation 
shifter

PBS
H / -45

V / +45
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Characterisation of practical devices 

Example: Gain of  a signal state
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The gain     is defined as the probability that a signal state sent by Alice produces at least one “click” 
in Bob’s detection apparatus

⇢ = e�µ
1X

n=0

µn

n!
|nihn| Q = e�µ

1X

n=0

µn

n!
Yn

Q

The yield      of  an n-photon state is the conditional probability of  a detection event on Bob’s side 
given that Alice sent an n-photon state

Yn

Characterisation of practical devices 

Example: Gain of  a signal state
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The gain     is defined as the probability that a signal state sent by Alice produces at least one “click” 
in Bob’s detection apparatus

⇢ = e�µ
1X

n=0

µn

n!
|nihn| Q = e�µ

1X

n=0

µn

n!
Yn

Q

The yield      of  an n-photon state is the conditional probability of  a detection event on Bob’s side 
given that Alice sent an n-photon state

Yn

Characterisation of practical devices 

Example: Gain of  a signal state

Polarisation 
shifter

PBS

BS
⌘B⌘channel

BS

⇢

BS
⌘sys = ⌘B⌘channel

⇢ a

b

c
d

|0i

D
click

= 1�D
noclick

|0i|0i
D

noclick

= (1� p
dark

)2|0ih0|
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Characterisation of practical devices 

|nia =
1p
n!
(a†)n|0i |nicd =

1p
n!
(
p
⌘sysc

† +
p
1� ⌘sysd

†)n|0i
BS

BS

⇢ a

b

c
d

|0i

⌘sys

|nicd =
nX

k=0

s✓
n

k

◆
p
⌘sys

n�k
p

1� ⌘sys
k|n� k, kicd

Here we have used the fact that

|n� kic =
1p

(n� k)!
(c†)n�k|0i |kid =

1p
k!
(d†)k|0iand
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Characterisation of practical devices 

|nia =
1p
n!
(a†)n|0i |nicd =

1p
n!
(
p
⌘sysc

† +
p
1� ⌘sysd

†)n|0i
BS

BS

⇢ a

b

c
d

|0i

⌘sys

|nicd =
nX

k=0

s✓
n

k

◆
p
⌘sys

n�k
p

1� ⌘sys
k|n� k, kicd

Here we have used the fact that

|n� kic =
1p

(n� k)!
(c†)n�k|0i |kid =

1p
k!
(d†)k|0iand

hn|mi = �nm

= 1� (1� pdark)
2(1� ⌘sys)

n

Yn = Tr[|nicdhn|(Dclick ⌦ 1d)]

= 1� Tr[|nicdhn|(Dnoclick

⌦ 1d)]

= 1� (1� pdark)
2Tr[|nicdhn|(|0ich0|⌦ 1d)]
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Q = e�µ
1X

n=0

µn

n!
Yn

The gain is directly observed in the experiment.

Q = 1� (1� pdark)
2e�µ⌘sys

Characterisation of practical devices 

Given that: = 1� (1� pdark)
2(1� ⌘sys)

nYn
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Q = e�µ
1X

n=0

µn

n!
Yn

The gain is directly observed in the experiment.

Q = 1� (1� pdark)
2e�µ⌘sys

Characterisation of practical devices 

Given that: = 1� (1� pdark)
2(1� ⌘sys)

nYn

0 50 100 1500

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 10−3

distance (km)

Q

Example:

pdark = 10�6

µ = 0.1

⌘B = 0.045

↵ = 0.2 dB/km
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Characterisation of practical devices 

Example: Error rate
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Characterisation of practical devices 

Example: Error rate

Misalignment in the channel:

✓
c†H
c†V

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
e†H
e†V

◆

Polarisation 
shifter

PBS

BS

⇢H

⌘sys

U
a

b

c

d

e

f

g

|0i

D1

D2
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Characterisation of practical devices 

Example: Error rate

The error rate can be written as: E =
1

Q
e�µ

1X

n=0

µn

n!
Ynen

          : Probability that a n-photon signal produces a detected event associated with an errorYnen

Misalignment in the channel:

✓
c†H
c†V

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
e†H
e†V

◆

Polarisation 
shifter

PBS

BS

⇢H

⌘sys

U
a

b

c

d

e

f

g

|0i

D1

D2
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Characterisation of practical devices 

Example: Error rate

The error rate can be written as: E =
1

Q
e�µ

1X

n=0

µn

n!
Ynen

          : Probability that a n-photon signal produces a detected event associated with an errorYnen

Misalignment in the channel:

✓
c†H
c†V

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
e†H
e†V

◆

Polarisation 
shifter

PBS

BS

⇢H

⌘sys

U
a

b

c

d

e

f

g

|0i

D1

D2

Double clicks are associated to random single clicks

Ynen = Tr

"✓
D

1,noclick ⌦D
2,click ⌦ 1d +

1

2
D

1,click ⌦D
2,click ⌦ 1d

◆
|nidfghn|

#
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Characterisation of practical devices 

Now we calculate: |nidfg
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Characterisation of practical devices 

Polarisation 
shifter

PBS

BS

⇢H

⌘sys

U
a

b

c

d

e

f

g

|0i

D1

D2 ⇢H = |nihn|HInput state:
with

|niH =
1p
n!
(a†H)

n|0i

Now we calculate: |nidfg
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Characterisation of practical devices 

Polarisation 
shifter

PBS

BS

⇢H

⌘sys

U
a

b

c

d

e

f

g

|0i

D1

D2 ⇢H = |nihn|HInput state:
with

|niH =
1p
n!
(a†H)

n|0i

a†H ! p
⌘sysc

†
H +

p
1� ⌘sysd

†
H ! p

⌘sys
⇣
cos ✓e†H � sin ✓e†V

⌘
+

p
1� ⌘sysd

†
H

! p
⌘sys

⇣
cos ✓f†

H � sin ✓g†V

⌘
+

p
1� ⌘sysd

†
H

BS U

PBS

Now we calculate: |nidfg
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Characterisation of practical devices 

Polarisation 
shifter

PBS

BS

⇢H

⌘sys

U
a

b

c

d

e

f

g

|0i

D1

D2 ⇢H = |nihn|HInput state:
with

|niH =
1p
n!
(a†H)

n|0i

a†H ! p
⌘sysc

†
H +

p
1� ⌘sysd

†
H ! p

⌘sys
⇣
cos ✓e†H � sin ✓e†V

⌘
+

p
1� ⌘sysd

†
H

! p
⌘sys

⇣
cos ✓f†

H � sin ✓g†V

⌘
+

p
1� ⌘sysd

†
H

BS U

PBS

|nidfg =

nX

k=0

n�kX

l=0

s
n!

k!l!(n� k � l)!
p
⌘sys

n�k
p

1� ⌘sys
k
(cos ✓)n�k�l

(� sin ✓)l|k, n� k � l, lidH,fH,gV

Now we calculate: |nidfg
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Characterisation of practical devices 
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Characterisation of practical devices 

D

D
click

= 1�D
noclick

D
noclick

= (1� d
dark

)|0ih0|

Ynen = Tr

"✓
D

1,noclick ⌦D
2,click ⌦ 1d +

1

2
D

1,click ⌦D
2,click ⌦ 1d

◆
|nidfghn|

#
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Characterisation of practical devices 

D =
1

2

h
1dfg + (1� pdark)(1d ⌦ |0ih0|f ⌦ 1g � 1d ⌦ 1f ⌦ |0ih0|g)

�(1� pdark)
2(1d ⌦ |0ih0|f ⌦ |0ih0|g)

i

D

D
click

= 1�D
noclick

D
noclick

= (1� d
dark

)|0ih0|

Ynen = Tr

"✓
D

1,noclick ⌦D
2,click ⌦ 1d +

1

2
D

1,click ⌦D
2,click ⌦ 1d

◆
|nidfghn|

#
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Characterisation of practical devices 

D =
1

2

h
1dfg + (1� pdark)(1d ⌦ |0ih0|f ⌦ 1g � 1d ⌦ 1f ⌦ |0ih0|g)

�(1� pdark)
2(1d ⌦ |0ih0|f ⌦ |0ih0|g)

i

Ynen =

1

2

n
1 + (1� pdark)

1

2

n
[(2� ⌘sys � ⌘sys cos 2✓)

n � (2� ⌘sys + ⌘sys cos 2✓)
n
]

�(1� pdark)
2(1� ⌘sys)

n
o

We obtain: 

D

D
click

= 1�D
noclick

D
noclick

= (1� d
dark

)|0ih0|

Ynen = Tr

"✓
D

1,noclick ⌦D
2,click ⌦ 1d +

1

2
D

1,click ⌦D
2,click ⌦ 1d

◆
|nidfghn|

#
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Characterisation of practical devices 

The error rate is directly observed in the experiment.

E =
1

Q
e�µ

1X

n=0

µn

n!
Ynen

=
1

2Q

h
1 + (1� p

dark

)
⇣
e�µ⌘sys cos

2 ✓ � e�µ⌘sys sin
2 ✓
⌘
� (1� p

dark

)2e�µ⌘sys

i
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Characterisation of practical devices 

The error rate is directly observed in the experiment.

E =
1

Q
e�µ

1X

n=0

µn

n!
Ynen

=
1

2Q

h
1 + (1� p

dark

)
⇣
e�µ⌘sys cos

2 ✓ � e�µ⌘sys sin
2 ✓
⌘
� (1� p

dark

)2e�µ⌘sys

i

Example: BB84 with phase-randomised WCPs
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Characterisation of practical devices 

The error rate is directly observed in the experiment.

E =
1

Q
e�µ

1X

n=0

µn

n!
Ynen

=
1

2Q

h
1 + (1� p

dark

)
⇣
e�µ⌘sys cos

2 ✓ � e�µ⌘sys sin
2 ✓
⌘
� (1� p

dark

)2e�µ⌘sys

i

Example: BB84 with phase-randomised WCPs

R � q {p1Y1[1� h(e1)]�Qh(E)}

                       is the basis-sift factor (known)
                             is the probability that Alice emits a single-photon state (known)
                             is the yield of  the single-photon states (unknown)
                             is the phase error of  the single photon states (unknown)
                             is the overall gain of  the signal states (observed)
                             is the overall error rate of  the signal states (observed)

q
p1 = µe�µ

Y1

e1
Q
E

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).
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Characterisation of practical devices 

We assume that            is the same for both basis. Parameter estimation (due to the PNS 
attack we need to consider the wort-case scenario):

Q,E,

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).
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Characterisation of practical devices 

We assume that            is the same for both basis. Parameter estimation (due to the PNS 
attack we need to consider the wort-case scenario):

Q,E,

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).

Y1 =
Q� pmulti

p1
e1 =

E

1� pmulti

Q

pmulti = 1� e�µ � µe�µwhere
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Characterisation of practical devices 

We assume that            is the same for both basis. Parameter estimation (due to the PNS 
attack we need to consider the wort-case scenario):

Q,E,

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).

Y1 =
Q� pmulti

p1
e1 =

E

1� pmulti

Q

pmulti = 1� e�µ � µe�µwhere

0 10 20 30 40 50−8

−7

−6

−5

−4

−3

distance (km)

lo
g1

0 
(R

)

Example:
pdark = 10�6

⌘B = 0.045

↵ = 0.2 dB/km

q ⇡ 1

ed = sin2 ✓ = 0.015

µ optimised
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QKD with decoy states (asymptotic 
case)
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QKD with decoy states

Motivation: Better estimation of  Y1, e1.
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QKD with decoy states

WCP Encoder 

Random  
number  

generator 

Alice 

Phase randomized weak coherent pulses 
Polarization 
shifter 

+ or × 
Random  
number  

generator 

PB 

Bob 

Quantum channel 
Mean photon  

number  
…  

⇢l = e�µl

1X

n=0

µn
l

n!
|nihn|

Alice prepares phase-randomised weak coherent pulses whose mean photon number is 
chosen for each signal from a finite set of  possible values.

W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 
(2005).

with l 2 {s, d1, d2, . . . , dN}

Motivation: Better estimation of  Y1, e1.

Tuesday, August 6, 13



QKD with decoy states

W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 
(2005).

In principle Eve can guess the intensity setting l selected by Alice:      

⇢l = e�µl

1X

n=0

µn
l

n!
|nihn| p(l|n) = p(n|l) p(l)

p(n)

= eµl
µn
l

n!

p(l)P
l p(l)e

µlµn
l /n!

QND

n

Intuition: 
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QKD with decoy states

W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 
(2005).

In principle Eve can guess the intensity setting l selected by Alice:      

⇢l = e�µl

1X

n=0

µn
l

n!
|nihn| p(l|n) = p(n|l) p(l)

p(n)

= eµl
µn
l

n!

p(l)P
l p(l)e

µlµn
l /n!

QND

n

Intuition: 

Key idea: The yields       and the error rates        are equal for the different intensity settings     Yn en

YnEve has to decide        and enQND

n
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QKD with decoy states

How to estimate the parameters           ?   We have a set of  linear equations...      Y1, e1

W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 
(2005).
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QKD with decoy states

Qs = e�µs

1X

n=0

µn
s

n!
Yn

Qd1 = e�µd1

1X

n=0

µn
d1

n!
Yn

QdN = e�µdN

1X

n=0

µn
dN

n!
Yn

...

EsQs = e�µs

1X

n=0

µn
s

n!
Ynen

Ed1Qd1 = e�µd1

1X

n=0

µn
d1

n!
Ynen

EdNQdN = e�µdN

1X

n=0

µn
dN

n!
Ynen

...

observed observedknown knownunknown unknown

How to estimate the parameters           ?   We have a set of  linear equations...      Y1, e1

W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 
(2005).
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QKD with decoy states

For certain cases, as the Poisson distribution, one can obtain analytical bounds for  
X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005).

Y1, e1
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QKD with decoy states

In general, one can solve the estimation problem using linear programming,       

max cTx
s.t. Ax  b

x � 0

where x is a vector of  unknown variables, c and b are vectors whose coefficients are known, 
and A is a known matrix.      

For certain cases, as the Poisson distribution, one can obtain analytical bounds for  
X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005).

Y1, e1

Tuesday, August 6, 13



QKD with decoy states

In general, one can solve the estimation problem using linear programming,       

max cTx
s.t. Ax  b

x � 0

where x is a vector of  unknown variables, c and b are vectors whose coefficients are known, 
and A is a known matrix.      

For certain cases, as the Poisson distribution, one can obtain analytical bounds for  
X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005).

Y1, e1

We need a finite number of  known/unknown parameters      Ql = e�µl

1X

n=0

µn
l

n!
Yn
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QKD with decoy states

In general, one can solve the estimation problem using linear programming,       

max cTx
s.t. Ax  b

x � 0

where x is a vector of  unknown variables, c and b are vectors whose coefficients are known, 
and A is a known matrix.      

For certain cases, as the Poisson distribution, one can obtain analytical bounds for  
X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005).

Y1, e1

We need a finite number of  known/unknown parameters      Ql = e�µl

1X

n=0

µn
l

n!
Yn

Ql � e�µl

McutX

n=0

µl

n!
Yn

Ql  e�µl

McutX

n=0

µl

n!
Yn + e�µl

1X

n=Mcut+1

µl

n!
= e�µl

McutX

n=0

µl

n!
Yn +

 
1� e�µl

McutX

n=0

µl

n!

!

n

n n n n
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QKD with decoy states

Lower bound 
for       

This is done for both BB84 basis.                         

min Y1

Ql  e�µl

McutX

n=0

µl

n!
Yn +

 
1� e�µl

McutX

n=0

µl

n!

!
8l

s.t.

n n
Y1

Ql � e�µl

McutX

n=0

µn
l

n!
Yn 8l

1 � Yn � 0
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QKD with decoy states

Lower bound 
for       

This is done for both BB84 basis.                         

min Y1

Ql  e�µl

McutX

n=0

µl

n!
Yn +

 
1� e�µl

McutX

n=0

µl

n!

!
8l

s.t.

n n
Y1

Ql � e�µl

McutX

n=0

µn
l

n!
Yn 8l

1 � Yn � 0

e1  �1
Y1

�n = Ynen

ElQl  e�µl

McutX

n=0

µl

n!
�n +

 
1� e�µl

McutX

n=0

µl

n!

!
8l

max �1

s.t. Upper bound 
for      :       e1

Similarly, if  we define                          

n n

ElQl � e�µl

McutX

n=0

µn
l

n!
�n 8l

1 � �n � 0
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QKD with decoy states

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).

R � q
�
p1|sY1[1� h(e1)]�Qsh(Es)

 

                             is the conditional probability that Alice emits a single-photon state 
                             when she uses the signal intensity setting (known)
                             is the overall gain of  the signal states (observed)
                             is the overall error rate of  the signal states (observed)

p1,s = µse
�µs

Qs

Es
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QKD with decoy states

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).

If  we use the channel model described before: 

Example:
pdark = 10�6

⌘B = 0.045

↵ = 0.2 dB/km

q ⇡ 1

ed = sin2 ✓ = 0.015

µ optimised

R � q
�
p1|sY1[1� h(e1)]�Qsh(Es)

 

                             is the conditional probability that Alice emits a single-photon state 
                             when she uses the signal intensity setting (known)
                             is the overall gain of  the signal states (observed)
                             is the overall error rate of  the signal states (observed)

p1,s = µse
�µs

Qs

Es
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Parameter estimation (finite case)
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Parameter estimation (finite case)
In any experiment Alice only sends a finite number of  signals. When the sifting conditions 
are met we have that
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Parameter estimation (finite case)
In any experiment Alice only sends a finite number of  signals. When the sifting conditions 
are met we have that

Z basis X basis 

|Zs|

|Zd1 |

|Zd2 |

|ZdN |

...

To compute the
error rate

...

|XdN |

|Xd2 |

|Xd1 |

|Xs|

We need to compute a lower bound for the number of  single photons and an upper bound for 
their phase error rate in the set 

ns

Tuesday, August 6, 13



Parameter estimation (finite case)

Actual protocol (let us focus, for instance, in the Z basis):

Alice 

Alice chooses an intensity setting    with 
probability 

l
p(l|Z) ⇢l = e�µl

1X

n=0

µn
l

n!
|nihn|
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Parameter estimation (finite case)

Actual protocol (let us focus, for instance, in the Z basis):

Alice 

Alice chooses an intensity setting    with 
probability 

l
p(l|Z) ⇢l = e�µl

1X

n=0

µn
l

n!
|nihn|

Equivalent protocol:

n=0

n=1

n=2

...

For each signal, Alice first chooses a photon number 
n with probability 

After Bob declares the detected events, Alice decides 
the intensity setting     with probability

p(n|Z) =
X

l

p(l|Z)p(n|l,Z)

l

p(l|n,Z) = p(n|l,Z) p(l|Z)
p(n|Z)
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Parameter estimation (finite case)

Let       denote the number of  signals sent by Alice with n photons, when both Alice and Bob 
select the basis Z, and Bob obtains a click in his measurement apparatus.

S0

S1

S2

. . .

Set of  detected events

X

l

|Zl| =
X

n

Sn

Sn
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Parameter estimation (finite case)

Let       denote the number of  signals sent by Alice with n photons, when both Alice and Bob 
select the basis Z, and Bob obtains a click in his measurement apparatus.

S0

S1

S2

. . .

Set of  detected events

X

l

|Zl| =
X

n

Sn

Sn

Sn

Using the equivalent protocol we expect to be able to write: 

|Zl| =
X

n

p(l|n,Z)Sn + �l

observed known unknown can be bounded

We will be able to obtain the parameters       , in particular S1
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Parameter estimation (finite case)

How to bound the fluctuation term                   Example: Chernoff  bound�l !
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Parameter estimation (finite case)

How to bound the fluctuation term                   Example: Chernoff  bound�l !
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Parameter estimation (finite case)

How to bound the fluctuation term                   Example: Chernoff  bound�l !

This implies that 

|Zl| =
X

n

p(l|n,Z)Sn + �l

except with error probability                        , where                            , with�l = ✏l + ✏̂l �l 2 [��l, �̂l]

�l = g
⇣
|Zl|, ✏2(4+

p
7)2/9

l

⌘

�̂l = g
�
|Zl|, ✏̂3l

�
Importantly, the fluctuation term is 
bounded by observed quantities and 
the tolerated failure probability                
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Parameter estimation (finite case)

      : Number of  signals sent by Alice with n photons, when she and Bob select the Z basis.

Nn � Sn � 0

Nn

We have more conditions:

Tuesday, August 6, 13



Parameter estimation (finite case)

Using Chernoff  inequality, we have that

p (Nn � N [p(n|Z) + ⇠n])  e�N⇠2n/[2(p(n|Z)+⇠n)]

p (Nn  N [p(n|Z)� ⇠n])  e�N⇠2n/[2p(n|Z)]

where                     is the number of  signals sent by Alice and measured by Bob in the Z basisN =
X

n

Nn

      : Number of  signals sent by Alice with n photons, when she and Bob select the Z basis.

Nn � Sn � 0

Nn

We have more conditions:
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Parameter estimation (finite case)

Using Chernoff  inequality, we have that

p (Nn � N [p(n|Z) + ⇠n])  e�N⇠2n/[2(p(n|Z)+⇠n)]

p (Nn  N [p(n|Z)� ⇠n])  e�N⇠2n/[2p(n|Z)]

where                     is the number of  signals sent by Alice and measured by Bob in the Z basisN =
X

n

Nn

Equivalently, we can say that Nn = N [p(n|Z) + �n]

except with error probability                        , where                            , with�n = ✏n + ✏̂n �n 2 [��n, �̂n]

�n = min
�
g[p(n|Z)/N, ✏2n], p(n|Z)

 

�̂n = min {f [N, p(n|Z), ✏̂n], 1� p(n|Z)}

where                                       and  g(x, y) =
p

x ln (y�1) f(x, y, z) = ln (z�1)[1 +
p

1 + 2xy/ ln (z�1)]/x

N � Nn � 0We also use

      : Number of  signals sent by Alice with n photons, when she and Bob select the Z basis.

Nn � Sn � 0

Nn

We have more conditions:
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Parameter estimation (finite case)

Based on the foregoing:

min S1

|Zl| =
1X

n=0

p(l|n,Z)Sn + �l, 8l

�̂l � �l � ��l, 8l
X

l

�l = 0, 8l

N [p(n|Z) + �n] � Sn � 0, 8n

�̂n � �n � ��n, 8n

s.t.

(from the condition                            )
X

l

|Zl| =
X

n

Sn

except with error probability       given by                        ✏1 ✏1 
X

l

�l +
X

n

�n

Unknown parameters: Sn, �l, �n
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Parameter estimation (finite case)

Based on the foregoing:

min S1

|Zl| =
1X

n=0

p(l|n,Z)Sn + �l, 8l

�̂l � �l � ��l, 8l
X

l

�l = 0, 8l

N [p(n|Z) + �n] � Sn � 0, 8n

�̂n � �n � ��n, 8n

s.t.

(from the condition                            )
X

l

|Zl| =
X

n

Sn

except with error probability       given by                        ✏1 ✏1 
X

l

�l +
X

n

�n

This linear optimisation problem can be solved analytically or 
numerically using linear programming                       

Unknown parameters: Sn, �l, �n
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Parameter estimation (finite case)

Example: Solution using linear programming. We reduce the number of  unknown 
parameters to a finite set:
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Parameter estimation (finite case)

Example: Solution using linear programming. We reduce the number of  unknown 
parameters to a finite set:

except with error probability      given by                        ✏1

min S1

�̂l � �l � ��l, 8l
X

l

�l = 0, 8l

N [p(n|Z) + �n] � Sn � 0, 8n

�̂n � �n � ��n, 8n

s.t. |Zl| �
X

n2Scut

p(l|n, Z)Sn + �l, 8l

|Zl| 
X

n2Scut

p(l|n, Z)Sn + �l + max

j /2Scut

p(l|j, Z)N

"
1�

X

n2Scut

(p(n|Z) + �n)

#
, 8l

2 Scut

2 Scut

✏1 
X

l

�l +
X

n

�n
2 Scut

Here:                         Scut = {n : 0  n  Mcut}
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Parameter estimation (finite case)

     is a lower bound for the number of  single photon in the Z basis:S1

|Zs|

|Zd1 |

|Zd2 |

|ZdN |

...
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Parameter estimation (finite case)

     is a lower bound for the number of  single photon in the Z basis:S1

|Zs|

|Zd1 |

|Zd2 |

|ZdN |

...

|Zs|

|Zd1 |

|Zd2 |

|ZdN |

...

ns
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Parameter estimation (finite case)

     is a lower bound for the number of  single photon in the Z basis:S1

|Zs|

|Zd1 |

|Zd2 |

|ZdN |

...

|Zs|

|Zd1 |

|Zd2 |

|ZdN |

...

ns

Using again Chernoff  bound:

except with error probability      , where: ✏01

n1 � p(s|1,Z) ns

|Zs|
S1 ��1

�1 = g

✓
p(s|1,Z) ns

|Zs|
S1, ✏

0
1

◆
2

Total error probability in the estimation of       :n1 "1  ✏01 +
X

l

�l +
X

n2Scut

�n
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Parameter estimation (finite case)

Let us know calculate the phase error of  the single photons:
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Parameter estimation (finite case)

Let us know calculate the phase error of  the single photons:

...

|XdN |

|Xd2 |

|Xd1 |

|Xs|
Using the same techniques as before we can 
obtain a lower bound for      (in the X basis) 
and an upper bound for the number of  
errors      associated to single-photon events 
in the X basis

S1

ē1
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Parameter estimation (finite case)

Let us know calculate the phase error of  the single photons:

...

|XdN |

|Xd2 |

|Xd1 |

|Xs|
Using the same techniques as before we can 
obtain a lower bound for      (in the X basis) 
and an upper bound for the number of  
errors      associated to single-photon events 
in the X basis

S1

ē1

Now we can use a result from random sampling without replacement:

n1 S1

e1 ? ē1
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Parameter estimation (finite case)

Let us know calculate the phase error of  the single photons:

...

|XdN |

|Xd2 |

|Xd1 |

|Xs|
Using the same techniques as before we can 
obtain a lower bound for      (in the X basis) 
and an upper bound for the number of  
errors      associated to single-photon events 
in the X basis

S1

ē1

e1  min

(&
n1

✓
ē1
S1

◆
+ (n1 + S1)⌦(n1, S1, ✏e)

'
, n1/2

)

R. J. Serfling, Ann. Statist. 2 (1), 39-48 (1974).

except with error probability

with ⌦(x, y, z) =
p
(x+ 1) ln (z�1)/(2y(x+ y))

✏e1  ✏e +
X

l

(�l + �l,e) +
X

n2Scut

�n

Now we can use a result from random sampling without replacement:

n1 S1

e1 ? ē1
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Side-channels
Are experimental implementations of  QKD really secure?     
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Side-channels
The security proof  of  a QKD system typically includes several steps    

Actual physical devices 

Quantum optical model 
e.g. mode based  

Security model 
e.g. qubit based  

Security proof 

From a mathematical model for employed devices we can provide a 
scientific (mathematical and physical) universally composable 
security proof for QKD: perfect key except with probability ε   

Modelling 

e.g. realistic laser sources 
beamsplitters model 
threshold detectors model 

Reduction to essentials  
e.g. tagging, squashing 

Entanglement distillation 
Information theoretic 

1

2
||⇢AE � UA ⌦ ⇢E||  ✏

⇢AE =
X

s

|sihs|⌦ ⇢sE

UA =
1

|S|
X

s

|sihs|
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Side-channels
Modelling of  real devices: What can go wrong?   
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Side-channels
Modelling of  real devices: What can go wrong?   

State preparation:  

- Does the source emit coherent states?
- Are the states truly phase-randomised?
- Are we preparing perfect BB84 states?
- Are the states single-mode?
- Consider intensity fluctuations in the source...

...
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Side-channels
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State preparation:  

- Does the source emit coherent states?
- Are the states truly phase-randomised?
- Are we preparing perfect BB84 states?
- Are the states single-mode?
- Consider intensity fluctuations in the source...

...

If  we know the imperfections we can 
include them in the security proof
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Side-channels
Modelling of  real devices: What can go wrong?   

State preparation:  

- Does the source emit coherent states?
- Are the states truly phase-randomised?
- Are we preparing perfect BB84 states?
- Are the states single-mode?
- Consider intensity fluctuations in the source...

...

If  we know the imperfections we can 
include them in the security proof

Measurement device:  

- Problem with efficiency mismatch 
- Take into account the dead-time of  the detectors
- Guarantee that the BS (passive receiver) cannot be controlled 
   by Eve (e.g. wavelength dependence)

- Do the detectors behave as we expect? 

...
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Side-channels
Modelling of  real devices: What can go wrong?   

State preparation:  

- Does the source emit coherent states?
- Are the states truly phase-randomised?
- Are we preparing perfect BB84 states?
- Are the states single-mode?
- Consider intensity fluctuations in the source...

...

If  we know the imperfections we can 
include them in the security proof

The weakest link in a QKD system is the measurement device

Measurement device:  

- Problem with efficiency mismatch 
- Take into account the dead-time of  the detectors
- Guarantee that the BS (passive receiver) cannot be controlled 
   by Eve (e.g. wavelength dependence)

- Do the detectors behave as we expect? 

...
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Side-channels
Quantum hacking: Blinding attack

Vadim Makarov 

Lars Lydersen 
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Side-channels
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I. Gerhardt et al., Nature Comm. 2, 349 (2011).

Eavesdropping 100% of  the key on installed QKD line. 

See also: 
Y. Zhao et al., Phys. Rev. A 78, 042333 (2008).
N. Jain et al., Phys. Rev. Lett. 107, 110501 (2011).
H. Weier et al., New J. Phys. 13, 073024 (2011)
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Option 1: “Patches” 

•  Abandon the provable security model of QKD 

•  Can often be defeated by hacking advances  
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Bridging the gap between theory and practice...

Option 1: “Patches” 

•  Abandon the provable security model of QKD 

•  Can often be defeated by hacking advances  

Option 2: Integrate imperfections into the security proof 

•  Typically, it may need deep modification of the protocol, hardware 
and security proof 

•  Device-independent quantum key distribution (avoids the hard-
verifiable requirement of completely characterizing real devices)  
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Device independent QKD (diQKD)/Self-testing QKD

D. Mayers and A. C.-C. Yao, in Proc. 39th Annual Symposium on Foundations of  Computer Science (FOCS98), p. 503 (1998); A. Acín et al., 
Phys. Rev. Lett. 98, 230501 (2007); A. Acín, N. Gisin and Ll. Masanes, Phys. Rev. Lett. 97, 120405 (2006).  
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Device independent QKD (diQKD)/Self-testing QKD

Black box 

Alice Bob 
a=-1 or +1 

Source 
b=-1 or +1 

x y 
Eve 

Black box Black box   

We still need some assumptions: validity of  QM, true RNG, Alice and Bob shielded from Eve, no 
memory, ... Removes the problem of  full characterising real devices! 

D. Mayers and A. C.-C. Yao, in Proc. 39th Annual Symposium on Foundations of  Computer Science (FOCS98), p. 503 (1998); A. Acín et al., 
Phys. Rev. Lett. 98, 230501 (2007); A. Acín, N. Gisin and Ll. Masanes, Phys. Rev. Lett. 97, 120405 (2006).  
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Device independent QKD (diQKD)/Self-testing QKD

BASIC idea: The existence of entanglement  => possibility of secure key generation 

Bell inequalities test => Entanglement verification 

Alice and Bob can perform Bell inequality test with untrusted devices  

If p(a,b|x,y) violates some Bell inequality, then p(a,b|x,y) contains secrecy irrespectively of the 
implementation! 

Advantage: diQKD eliminates ALL potential side-channels 

Black box 

Alice Bob 
a=-1 or +1 

Source 
b=-1 or +1 

x y 
Eve 

Black box Black box   

We still need some assumptions: validity of  QM, true RNG, Alice and Bob shielded from Eve, no 
memory, ... Removes the problem of  full characterising real devices! 

D. Mayers and A. C.-C. Yao, in Proc. 39th Annual Symposium on Foundations of  Computer Science (FOCS98), p. 503 (1998); A. Acín et al., 
Phys. Rev. Lett. 98, 230501 (2007); A. Acín, N. Gisin and Ll. Masanes, Phys. Rev. Lett. 97, 120405 (2006).  
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Now... let’s go to the lab

We need to violate a Bell inequality loophole-free               Very hard!!

Channel 

Losses 

Black box Black box 

Alice Bob 
a=-1 or +1 Source b=-1 or +1 

x y 
Eve 

Patch: random/deterministic assignment for lost signals             increase error rate          loss of  violation! !
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Now... let’s go to the lab

We need to violate a Bell inequality loophole-free               Very hard!!

Channel 

Losses 

Black box Black box 

Alice Bob 
a=-1 or +1 Source b=-1 or +1 

x y 
Eve 

Patch: random/deterministic assignment for lost signals             increase error rate          loss of  violation! !

But the transmission efficiency of 5 km of telecom fiber  
is roughly 80%; typical detection efficiencies are 10-15%   

Required detection efficiency > 82.8% 
Detection  
loophole 
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Fair-sampling device

N. Gisin, S. Pironio and N. Sangouard, Phys. Rev. Lett. 105, 070501 (2010); N. Sangouard et al., Phys. Rev. Lett. 106, 120403 (2011); 
M. Curty and T. Moroder, Phys. Rev. A 84, 010304(R) (2011).
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Fair-sampling device
In Bell tests           assume that the set of  detected photon pairs is a fair set (fair-sampling assumption). It is 
reasonable to assume that Nature is not malicious.
In diQKD, however, we fight against a possible active adversary. 

!

Channel 

Black box Black box 

Alice Bob 
a=-1 or +1 Source b=-1 or +1 

x y 
Eve Fair  

sampling 
device 

Fair  
sampling 

device 

Yes/No Yes/No 

Reduce channel loss via a “fair-sampling device” (leaves only problem of  detection efficiency)

N. Gisin, S. Pironio and N. Sangouard, Phys. Rev. Lett. 105, 070501 (2010); N. Sangouard et al., Phys. Rev. Lett. 106, 120403 (2011); 
M. Curty and T. Moroder, Phys. Rev. A 84, 010304(R) (2011).
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Fair-sampling device
In Bell tests           assume that the set of  detected photon pairs is a fair set (fair-sampling assumption). It is 
reasonable to assume that Nature is not malicious.
In diQKD, however, we fight against a possible active adversary. 

!

Channel 

Black box Black box 

Alice Bob 
a=-1 or +1 Source b=-1 or +1 

x y 
Eve Fair  

sampling 
device 

Fair  
sampling 

device 

Yes/No Yes/No 

Reduce channel loss via a “fair-sampling device” (leaves only problem of  detection efficiency)

Bob 

Bell measurement 

Fair-sampling device 

Bob For simplicity, qubit  
amplifier only on  

Bob’s side 

A simpler quantum relay  
works as well even with  

SPDC sources! 

Heralded qubit amplifier 

N. Gisin, S. Pironio and N. Sangouard, Phys. Rev. Lett. 105, 070501 (2010); N. Sangouard et al., Phys. Rev. Lett. 106, 120403 (2011); 
M. Curty and T. Moroder, Phys. Rev. A 84, 010304(R) (2011).
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What performance can we expect in practice?

“Original” qubit amplifier (dashed line) quantum relay 
(solid line). Upper figure shows a security analysis from 
Gisin et al. [PRL 105, 070501 (2010)]. Lower figure 
shows the conservative situation of assigning 
inconclusive to conclusive results deterministically.  

M. Curty and T. Moroder, Phys. Rev. A 84, 010304(R) (2011).
See also: D. Pitkänen et al., Phys. Rev. A 84, 022325 (2011).

Requires near unity detection efficiency  

An extremely low key rate (of order 10-8-10-10 per 
pulse) at practical distances 

di-QKD is a very beautiful idea but impractical 
with current technology => Need to improve 
entanglement sources, couplers and detectors! 

Limitations: 
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Rethink the problem: Most side channel attacks occur in the detectors

Charles/Eve: Measurement device  

Alice 

State 
preparation 

Bob 

State 
preparation Black box 

Results 

Give Eve the  
detectors! 
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Rethink the problem: Most side channel attacks occur in the detectors

Charles/Eve: Measurement device  

Alice 

State 
preparation 

Bob 

State 
preparation Black box 

Results 

Give Eve the  
detectors! 

Measurement-device independent QKD

A practical way to do QKD with “untrusted detectors”

Automatically immune to all detector side-channel attacks (existing and yet to be discovered)

No need to certify the measurement device (it can be even manufactured by a malicious eavesdropper, 
Eve). This is good news for QKD stardardisation and certification by European Telecommunications 
Standards Institute (ETSI)

H.-K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012); E. Biham, B. Huttner and T. Mor, Phys. Rev. A 54, 2651-2658 
(1996); H. Inamori, Algorithmica 34, 340-365 (2002). 
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Intuition why it can be secure: 
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Intuition why it can be secure: 

Alice Bob 

BM 
Results 

Channel Alice Bob 

BM 
Results 

Channel 

Results Alice Results Bob 

Results Alice Results Bob Results Alice Results Bob 

The result of  the Bell measurement reveals correlations between Alice and Bob’s bits but not the 
value of  the individual bits

Tuesday, August 6, 13



Side-channels
Measurement-device independent QKD

BS 

PBS PBS 

D1H 

D1V 

D2H 

D2V 

Measurement device 

Alice 

WCP 

Pol-M 

Decoy-IM 

Bob 

Decoy-IM 

Pol-M 

WCP 

Weak coherent source + 
decoy states 

H.-K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).
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Measurement-device independent QKD

BS 

PBS PBS 

D1H 

D1V 

D2H 

D2V 

Measurement device 

Alice 

WCP 

Pol-M 

Decoy-IM 

Bob 

Decoy-IM 

Pol-M 

WCP 

Weak coherent source + 
decoy states 

H.-K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).

R � p1,1,ZY1,1,Z[1� h(e1,1,X)]�QZh(EZ)

Z basis for key generation
X basis for testing only

         and          can be measured directly from the
experiment. 

              and              are estimated using decoy states

QZ EZ

Y1,1,Z e1,1,X
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Simulation results (finite-key case):

If  Alice and Bob use laser diodes at 1 GHz repetition rate, and each of  them sends                  
signals, we find, for instance, that they can distribute a 1 Mb secret key over a 75 km fiber link in 
less than 3 hours. 

N = 1013

M. Curty at al., preprint arXiv:1307:1081.

The experimental parameters are:                                                                                and the 
security bound                 . The misalignment in the first figure is 

↵ = 0.2 dB/km, ⌘B = 14.5%, Y0 = 6.02⇥ 10�6

✏ = 10�10 1.5%
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Let’s return to the lab...

Z. Tang et al., preprint arXiv:1306.6134 Y. Liu et al., preprint arXiv:1209.6178 

T. Ferreira da Silva et al., preprint arXiv:1207.6345 A. Rubenok et al., preprint arXiv:1204.0738 
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