What theorists should know when working with experimentalists

Marcos Curty
University of Vigo

QCrypt 2013

OUTLINE

- Motivation
- Characterisation of experimental components
- QKD with decoy states (asymptotic case)
- Parameter estimation (finite case)
- Side-channels

Motivation

MOTIVATION

From a theoretically point of view, a QKD system is rather simple. For instance, in the BB84 protocol:

Signals sent by Alice: Bob's measurements:

Bob's results: Sifted bits:

C.H. Bennett and G. Brassard, Proc. IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York), p. 175 (1984).

MOTIVATION

From a theoretically point of view, a QKD system is rather simple. For instance, in the BB84 protocol:

Signals sent by Alice: Bob's measurements:

Bob's results: Sifted bits:

C.H. Bennett and G. Brassard, Proc. IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE,

New York), p. 175 (1984).
Secret key rate:

$$
K \propto 1-h\left(e_{\mathrm{bit}}\right)-h\left(e_{\text {phase }}\right)
$$

P.W. Shor and 7. Preskill, PRL 85, 441 (2000).

MOTIVATION

In practice, however, the situation looks less simple.

MOTIVATION

In practice, however, the situation looks less simple.

For instance:

- Alice can emit signals that contain more than one photon prepared in the same polarisation state.
- Bob's detectors can output a double "click" due, for example, to dark counts.

MOTIVATION

Example: Photon number splitting (PNS) attack.

MOTIVATION

Example: Photon number splitting (PNS) attack.

Eve has full information about the part of the key generated from multi-photon signals

$$
K \leq p_{\exp }-p_{\text {multi }}
$$

B. Huttner et al., PRA 51, 1863 (1995); G. Brassard et al., PRL 85, 1330 (2000).

MOTIVATION

Example: Exploiting double-clicks (if Bob discards them).

MOTIVATION

Example: Exploiting double-clicks (if Bob discards them).

As a result, Bob's detection efficiency is basis dependent.

MOTIVATION

Example: Exploiting double-clicks (if Bob discards them).

As a result, Bob's detection efficiency is basis dependent.

There is a gap between theory and practice. Theorists have to develop security proofs that can be applied to the experimental realisations.

Characterisation of experimental components

CHARACTERISATION OF PRACTICAL DEVICES

Phase-randomised weak coherent pulses:

CHARACTERISATION OF PRACTICAL DEVICES

Phase-randomised weak coherent pulses:
Coherent states: $\quad\left|\alpha e^{i \phi}\right\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha e^{i \phi}\right)^{n}}{\sqrt{n!}}|n\rangle$

$$
|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle
$$

CHARACTERISATION OF PRACTICAL DEVICES

Phase-randomised weak coherent pulses:

Coherent states: $\quad\left|\alpha e^{i \phi}\right\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha e^{i \phi}\right)^{n}}{\sqrt{n!}}|n\rangle$

$$
|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle
$$

If the phase is randomised, we have:

$$
\mu=|\alpha|^{2}
$$

$$
\rho=\frac{1}{2 \pi} \int_{\phi}\left|\alpha e^{i \phi}\right\rangle\left\langle\alpha e^{i \phi}\right| \mathrm{d} \phi=e^{-|\alpha|^{2}} \sum_{n=0}^{\infty} \frac{|\alpha|^{2 n}}{n!}|n\rangle\langle n|=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!}|n\rangle\langle n|
$$

CHARACTERISATION OF PRACTICAL DEVICES

Phase-randomised weak coherent pulses:

Coherent states: $\quad\left|\alpha e^{i \phi}\right\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha e^{i \phi}\right)^{n}}{\sqrt{n!}}|n\rangle$

$$
|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle
$$

If the phase is randomised, we have:

$$
\rho=\frac{1}{2 \pi} \int_{\phi}\left|\alpha e^{i \phi}\right\rangle\left\langle\alpha e^{i \phi}\right| \mathrm{d} \phi=e^{-|\alpha|^{2}} \sum_{n=0}^{\infty} \frac{|\alpha|^{2 n}}{n!}|n\rangle\langle n|=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!}|n\rangle\langle n|
$$

Photon number statistics
when the intensity $\mu=0.1$

CHARACTERISATION OF PRACTICAL DEVICES

The BB84 signals can then be described as:

$$
\rho_{i}=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!}\left|n_{i}\right\rangle\left\langle n_{i}\right| \quad \text { with } \quad\left|n_{i}\right\rangle=\frac{1}{\sqrt{n!}}\left(a_{i}^{\dagger}\right)^{n}|0\rangle
$$

with $i \in\left\{\mathrm{H}, \mathrm{V},+45^{\circ},-45^{\circ}\right\}$

CHARACTERISATION OF PRACTICAL DEVICES

The BB84 signals can then be described as:

$$
\rho_{i}=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!}\left|n_{i}\right\rangle\left\langle n_{i}\right| \quad \text { with } \quad\left|n_{i}\right\rangle=\frac{1}{\sqrt{n!}}\left(a_{i}^{\dagger}\right)^{n}|0\rangle
$$

with $i \in\left\{\mathrm{H}, \mathrm{V},+45^{\circ},-45^{\circ}\right\}$

The creation operators a_{i} can be expressed as a function of two creation operators b_{1}, b_{2} associated to orthogonal polarisations:
creation operators

$$
\begin{aligned}
a_{\mathrm{H}}^{\dagger} & =\frac{1}{\sqrt{2}}\left(b_{1}^{\dagger}+b_{2}^{\dagger}\right) \\
a_{\mathrm{V}}^{\dagger} & =\frac{1}{\sqrt{2}}\left(b_{1}^{\dagger}-b_{2}^{\dagger}\right) \\
a_{+45^{\circ}}^{\dagger} & =\frac{1}{\sqrt{2}}\left(b_{1}^{\dagger}+i b_{2}^{\dagger}\right) \\
a_{-45^{\circ}}^{\dagger} & =\frac{1}{\sqrt{2}}\left(b_{1}^{\dagger}-i b_{2}^{\dagger}\right)
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

The BB84 signals can then be described as:

$$
\rho_{i}=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!}\left|n_{i}\right\rangle\left\langle n_{i}\right| \quad \text { with } \quad\left|n_{i}\right\rangle=\frac{1}{\sqrt{n!}}\left(a_{i}^{\dagger}\right)^{n}|0\rangle
$$

with $i \in\left\{\mathrm{H}, \mathrm{V},+45^{\circ},-45^{\circ}\right\}$

The creation operators a_{i} can be expressed as a function of two creation operators b_{1}, b_{2} associated to orthogonal polarisations:
creation operators

$$
\begin{aligned}
a_{\mathrm{H}}^{\dagger} & =\frac{1}{\sqrt{2}}\left(b_{1}^{\dagger}+b_{2}^{\dagger}\right) \\
a_{\mathrm{V}}^{\dagger} & =\frac{1}{\sqrt{2}}\left(b_{1}^{\dagger}-b_{2}^{\dagger}\right) \\
a_{+45^{\circ}}^{\dagger} & =\frac{1}{\sqrt{2}}\left(b_{1}^{\dagger}+i b_{2}^{\dagger}\right) \\
a_{-45^{\circ}}^{\dagger} & =\frac{1}{\sqrt{2}}\left(b_{1}^{\dagger}-i b_{2}^{\dagger}\right)
\end{aligned}
$$

single photon components

$$
\begin{aligned}
\left|1_{\mathrm{H}}\right\rangle=a_{\mathrm{H}}^{\dagger}|0\rangle & =\frac{1}{\sqrt{2}}(|1,0\rangle+|0,1\rangle) \\
\left|1_{\mathrm{V}}\right\rangle=a_{\mathrm{V}}^{\dagger}|0\rangle & =\frac{1}{\sqrt{2}}(|1,0\rangle-|0,1\rangle) \\
\left|1_{+45^{\circ}}\right\rangle=a_{+45^{\circ}}^{\dagger}|0\rangle & =\frac{1}{\sqrt{2}}(|1,0\rangle+i|0,1\rangle) \\
\left|1_{-45^{\circ}}\right\rangle=a_{-45^{\circ}}^{\dagger}|0\rangle & =\frac{1}{\sqrt{2}}(|1,0\rangle-i|0,1\rangle)
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Beam-splitters (BS):

There are two input modes and two output modes

If we neglect for the moment absorption and other imperfections:

$$
\binom{a^{\dagger}}{b^{\dagger}}=e^{i \phi}\left(\begin{array}{cc}
t e^{i \phi_{t}} & r e^{i \phi_{r}} \\
-r e^{-i \phi_{r}} & t e^{-i \phi_{t}}
\end{array}\right)\binom{c^{\dagger}}{d^{\dagger}}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Beam-splitters (BS):

There are two input modes and two output modes

If we neglect for the moment absorption and other imperfections:

$$
\begin{gathered}
\binom{a^{\dagger}}{b^{\dagger}}=e^{i \phi}\left(\begin{array}{cc}
t e^{i \phi_{t}} & r e^{i \phi_{r}} \\
-r e^{-i \phi_{r}} & t e^{-i \phi_{t}}
\end{array}\right)\binom{c^{\dagger}}{d^{\dagger}} \\
50: 50 \mathrm{BS} \leadsto\binom{a^{\dagger}}{b^{\dagger}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{c^{\dagger}}{d^{\dagger}}
\end{gathered}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Modelling the losses in the quantum channel (beam-splitter):

CHARACTERISATION OF PRACTICAL DEVICES

Modelling the losses in the quantum channel (beam-splitter):

$$
\begin{aligned}
& \binom{a^{\dagger}}{b^{\dagger}}=\left(\begin{array}{cc}
\sqrt{\eta_{\text {channel }}} & \sqrt{1-\eta_{\text {channel }}} \\
-\sqrt{1-\eta_{\text {channel }}} & \sqrt{\eta_{\text {channel }}}
\end{array}\right)\binom{c^{\dagger}}{d^{\dagger}} \\
& \left\{\begin{array}{l}
a^{\dagger}=\sqrt{\eta_{\text {channel }}} c^{\dagger}+\sqrt{1-\eta_{\text {channel }}} d^{\dagger} \\
b^{\dagger}=-\sqrt{1-\eta_{\text {channel }}} c^{\dagger}+\sqrt{\eta_{\text {channel }}} d^{\dagger}
\end{array}\right.
\end{aligned}
$$

|0〉
where $\eta_{\text {channel }}=10^{-\frac{\alpha d}{10}}$, with:
α represents the loss coefficient of the channel measured in $\mathrm{dB} / \mathrm{km}$ (e.g. in an optical fibre $\alpha=0.2 \mathrm{~dB} / \mathrm{km})$
d is the transmission distance measured in km .

CHARACTERISATION OF PRACTICAL DEVICES

Polarised beam-splitters (PBS):

CHARACTERISATION OF PRACTICAL DEVICES

Polarised beam-splitters (PBS):

Separate polarisation into spatial modes

$$
\begin{aligned}
& a_{\mathrm{H}}^{\dagger}=c_{\mathrm{H}}^{\dagger} \\
& a_{\mathrm{V}}^{\dagger}=d_{\mathrm{V}}^{\dagger}
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Polarised beam-splitters (PBS):

Separate polarisation into spatial modes

$$
\begin{aligned}
a_{\mathrm{H}}^{\dagger} & =c_{\mathrm{H}}^{\dagger} \\
a_{\mathrm{V}}^{\dagger} & =d_{\mathrm{V}}^{\dagger}
\end{aligned}
$$

Half wave plate (HWP):

Performs a polarisation transformation

$$
\binom{a_{+45^{\circ}}^{\dagger}}{a_{-45^{\circ}}^{\dagger}}=\frac{e^{-i \pi / 4}}{\sqrt{2}}\left(\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right)\binom{b_{+45^{\circ}}^{\dagger}}{b_{-45^{\circ}}^{\dagger}}
$$

$$
a_{+45^{\circ}}^{\dagger}=b_{\mathrm{V}}^{\dagger}
$$

$$
a_{-45^{\circ}}^{\dagger}=-i b_{\mathrm{H}}^{\dagger}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Threshold detectors:

They provide only two possible outcomes:

- "Click": At least one photon is detected
- "No click": No photon is detected

They are characterised by their detection efficiency $\eta_{\text {det }}$, their dark count rate $p_{\text {dark }}$ (which is, to good approximation, independent of the incoming signals), their dead-time, afterpulses,

CHARACTERISATION OF PRACTICAL DEVICES

Threshold detectors:

They provide only two possible outcomes:

- "Click": At least one photon is detected
- "No click": No photon is detected

They are characterised by their detection efficiency $\eta_{\text {det }}$, their dark count rate $p_{\text {dark }}$ (which is, to good approximation, independent of the incoming signals), their dead-time, afterpulses,

For simplicity, if we only consider their detection efficiency and dark count rate

$$
\begin{aligned}
D_{\text {noclick }} & =\left(1-p_{\text {dark }}\right) \sum_{n=0}^{\infty}\left(1-\eta_{\text {det }}\right)^{n}|n\rangle\langle n| \\
D_{\text {click }} & =1-D_{\text {noclick }}
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Example: BB84 receiver.

CHARACTERISATION OF PRACTICAL DEVICES

Example: BB84 receiver.
Passive receiver:

CHARACTERISATION OF PRACTICAL DEVICES

Example: BB84 receiver.

Passive receiver:

Active receiver:

CHARACTERISATION OF PRACTICAL DEVICES

Example: BB84 receiver.
Passive receiver:

Active receiver:

Polarisation
shifter

If we consider, for the moment, that all detectors have the same efficiency:

$|0\rangle$ Polarisation shifter

$$
\begin{aligned}
D_{\text {noclick }} & =\left(1-p_{\text {dark }}\right)|0\rangle\langle 0| \\
D_{\text {click }} & =1-D_{\text {noclick }}
\end{aligned}
$$

η_{B} : Transmittance of the optical components within Bob's measurement device and the detector efficiency

CHARACTERISATION OF PRACTICAL DEVICES

Example: Gain of a signal state

CHARACTERISATION OF PRACTICAL DEVICES

Example: Gain of a signal state

The gain Q is defined as the probability that a signal state sent by Alice produces at least one "click" in Bob's detection apparatus

$$
\rho=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!}|n\rangle\langle n| \quad Q \quad Q=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n}
$$

The yield Y_{n} of an n-photon state is the conditional probability of a detection event on Bob's side given that Alice sent an n-photon state

CHARACTERISATION OF PRACTICAL DEVICES

Example: Gain of a signal state

The gain Q is defined as the probability that a signal state sent by Alice produces at least one "click" in Bob's detection apparatus

$$
\rho=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!}|n\rangle\langle n| \quad Q \quad Q=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n}
$$

The yield Y_{n} of an n-photon state is the conditional probability of a detection event on Bob's side given that Alice sent an n-photon state

$$
\begin{gathered}
\eta_{\text {sys }}=\eta_{\mathrm{B}} \eta_{\text {channel }} \\
\eta_{\text {channel }} \\
\eta_{\mathrm{B}} \\
\mathrm{BS}_{\text {a }} \\
D_{\text {noclick }}=\left(1-p_{\text {dark }}\right)^{2}|0\rangle\langle 0| \\
D_{\text {click }}=1-D_{\text {noclick }}
\end{gathered}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Here we have used the fact that

$$
|n-k\rangle_{c}=\frac{1}{\sqrt{(n-k)!}}\left(c^{\dagger}\right)^{n-k}|0\rangle \quad \text { and } \quad|k\rangle_{d}=\frac{1}{\sqrt{k!}}\left(d^{\dagger}\right)^{k}|0\rangle
$$

CHARACTERISATION OF PRACTICAL DEVICES

Here we have used the fact that

$$
\begin{aligned}
&|n-k\rangle_{c}=\frac{1}{\sqrt{(n-k)!}}\left(c^{\dagger}\right)^{n-k}|0\rangle \quad \text { and } \quad|k\rangle_{d}=\frac{1}{\sqrt{k!}}\left(d^{\dagger}\right)^{k}|0\rangle \\
& Y_{n}=\operatorname{Tr}\left[|n\rangle_{c d}\langle n|\left(D_{\text {click }} \otimes 1_{d}\right)\right] \\
&=1-\operatorname{Tr}\left[|n\rangle_{c d}\langle n|\left(D_{\text {noclick }} \otimes 1_{d}\right)\right] \\
&=1-\left(1-p_{\text {dark }}\right)^{2} \operatorname{Tr}\left[|n\rangle_{c d}\langle n|\left(|0\rangle_{c}\langle 0| \otimes 1_{d}\right)\right] \\
&\langle n \mid m\rangle=\delta_{n m} \nabla=1-\left(1-p_{\text {dark }}\right)^{2}\left(1-\eta_{\text {sys }}\right)^{n}
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Given that: $\quad Y_{n}=1-\left(1-p_{\text {dark }}\right)^{2}\left(1-\eta_{\text {sys }}\right)^{n}$

$$
Q=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n} \quad \Longrightarrow Q=1-\left(1-p_{\text {dark }}\right)^{2} e^{-\mu \eta_{\mathrm{sys}}}
$$

The gain is directly observed in the experiment.

CHARACTERISATION OF PRACTICAL DEVICES

Given that: $\quad Y_{n}=1-\left(1-p_{\text {dark }}\right)^{2}\left(1-\eta_{\text {sys }}\right)^{n}$

$$
Q=e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n} \quad \neg Q=1-\left(1-p_{\text {dark }}\right)^{2} e^{-\mu \eta_{\mathrm{sys}}}
$$

The gain is directly observed in the experiment.

Example:

$$
\begin{aligned}
p_{\text {dark }} & =10^{-6} \\
\mu & =0.1 \\
\eta_{\mathrm{B}} & =0.045 \\
\alpha & =0.2 \mathrm{~dB} / \mathrm{km}
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Example: Error rate

CHARACTERISATION OF PRACTICAL DEVICES

Example: Error rate

CHARACTERISATION OF PRACTICAL DEVICES

Example: Error rate

The error rate can be written as: $\quad E=\frac{1}{Q} e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n} e_{n}$
$Y_{n} e_{n}$: Probability that a n-photon signal produces a detected event associated with an error

CHARACTERISATION OF PRACTICAL DEVICES

Example: Error rate

The error rate can be written as: $\quad E=\frac{1}{Q} e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n} e_{n}$
$Y_{n} e_{n}$: Probability that a n-photon signal produces a detected event associated with an error

$$
Y_{n} e_{n}=\operatorname{Tr}\left[\left(D_{1, \text { noclick }} \otimes D_{2, \text { click }} \otimes 1_{d}+\frac{1}{2} D_{1, \text { click }} \otimes D_{2, \text { click }} \otimes 1_{d}\right)|n\rangle_{d f g}\langle n|\right]
$$

Double clicks are associated to random single clicks

CHARACTERISATION OF PRACTICAL DEVICES

Now we calculate: $|n\rangle_{d f g}$

CHARACTERISATION OF PRACTICAL DEVICES

Now we calculate: $|n\rangle_{d f g}$

Input state: $\rho_{\mathrm{H}}=|n\rangle\left\langle\left. n\right|_{\mathrm{H}}\right.$ with

$$
|n\rangle_{\mathrm{H}}=\frac{1}{\sqrt{n!}}\left(a_{\mathrm{H}}^{\dagger}\right)^{n}|0\rangle
$$

CHARACTERISATION OF PRACTICAL DEVICES

Now we calculate: $|n\rangle_{d f g}$

Input state: $\rho_{\mathrm{H}}=|n\rangle\left\langle\left. n\right|_{\mathrm{H}}\right.$ with

$$
|n\rangle_{\mathrm{H}}=\frac{1}{\sqrt{n!}}\left(a_{\mathrm{H}}^{\dagger}\right)^{n}|0\rangle
$$

$$
\begin{aligned}
& \stackrel{\mathrm{BS}}{a_{\mathrm{H}}^{\dagger}} \sqrt{\eta_{\text {sys }}} c_{\mathrm{H}}^{\dagger}+\sqrt{1-\eta_{\text {sys }}} d_{\mathrm{H}}^{\dagger} \xrightarrow{\mathrm{U}} \sqrt{\eta_{\text {sys }}}\left(\cos \theta e_{\mathrm{H}}^{\dagger}-\sin \theta e_{\mathrm{V}}^{\dagger}\right)+\sqrt{1-\eta_{\text {sys }}} d_{\mathrm{H}}^{\dagger} \\
& \quad \mathrm{PBS} \sqrt{\eta_{\text {sys }}}\left(\cos \theta f_{\mathrm{H}}^{\dagger}-\sin \theta g_{\mathrm{V}}^{\dagger}\right)+\sqrt{1-\eta_{\text {sys }}} d_{\mathrm{H}}^{\dagger}
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

Now we calculate: $|n\rangle_{d f g}$

Input state: $\rho_{\mathrm{H}}=|n\rangle\left\langle\left. n\right|_{\mathrm{H}}\right.$ with

$$
|n\rangle_{\mathrm{H}}=\frac{1}{\sqrt{n!}}\left(a_{\mathrm{H}}^{\dagger}\right)^{n}|0\rangle
$$

$$
\begin{aligned}
& a_{\mathrm{H}}^{\dagger} \xrightarrow{\mathrm{BS}} \sqrt{\eta_{\mathrm{sys}}} c_{\mathrm{H}}^{\dagger}+\sqrt{1-\eta_{\mathrm{sys}}} d_{\mathrm{H}}^{\dagger} \xrightarrow{\mathrm{U}} \sqrt{\eta_{\mathrm{sys}}}\left(\cos \theta e_{\mathrm{H}}^{\dagger}-\sin \theta e_{\mathrm{V}}^{\dagger}\right)+\sqrt{1-\eta_{\mathrm{sys}}} d_{\mathrm{H}}^{\dagger} \\
& \stackrel{\mathrm{PBS}}{\rightarrow} \sqrt{\eta_{\mathrm{sys}}}\left(\cos \theta f_{\mathrm{H}}^{\dagger}-\sin \theta g_{\mathrm{V}}^{\dagger}\right)+\sqrt{1-\eta_{\mathrm{sys}}} d_{\mathrm{H}}^{\dagger} \\
& |n\rangle_{\mathrm{dfg}}=\sum_{k=0}^{n} \sum_{l=0}^{n-k} \sqrt{\frac{n!}{k!l!(n-k-l)!}}{\sqrt{\eta_{\mathrm{sys}}}}^{n-k}{\sqrt{1-\eta_{\mathrm{sys}}}}^{k}(\cos \theta)^{n-k-l}(-\sin \theta)^{l}|k, n-k-l, l\rangle_{d_{\mathrm{H}}, f_{\mathrm{H}}, g_{\mathrm{V}}}
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

CHARACTERISATION OF PRACTICAL DEVICES

$$
\begin{gathered}
Y_{n} e_{n}=\operatorname{Tr}\left[\left(\underset{1, \text { noclick }}{\rightleftarrows} D_{2, \text { click }} \otimes 1_{d}+\frac{1}{2} D_{1, \text { click }} \otimes D_{2, \text { click }} \otimes 1_{d}\right)|n\rangle_{d f g}\langle n|\right. \\
D \\
\square \quad \begin{array}{c}
D_{\text {noclick }}=\left(1-d_{\text {dark }}\right)|0\rangle\langle 0| \\
D_{\text {click }}=1-D_{\text {noclick }}
\end{array}
\end{gathered}
$$

CHARACTERISATION OF PRACTICAL DEVICES

$$
\begin{aligned}
& Y_{n} e_{n}=\operatorname{Tr}\left[\left(\underset{\left.D_{1, \text { noclick }} \otimes D_{2, \text { click }} \otimes 1_{d}+\frac{1}{2} D_{1, \text { click }} \otimes D_{2, \text { click }} \otimes 1_{d}\right)}{\longleftrightarrow}\right)|n\rangle_{d f g}\langle n|\right] \\
& D \\
& D \quad \begin{array}{c}
D_{\text {noclick }}=\left(1-d_{\text {dark }}\right)|0\rangle\langle 0| \\
D_{\text {click }}=1-D_{\text {noclick }}
\end{array} \\
& D=\frac{1}{2}\left[1_{d f g}+\left(1-p_{\text {dark }}\right)\left(1_{d} \otimes|0\rangle\left\langle\left. 0\right|_{f} \otimes 1_{g}-1_{d} \otimes 1_{f} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{g}\right)\right.\right. \\
& \quad-\left(1-p_{\text {dark }}\right)^{2}\left(1_{d} \otimes|0\rangle\left\langle\left. 0\right|_{f} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{g}\right)\right]
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

$$
\begin{aligned}
& Y_{n} e_{n}=\operatorname{Tr}\left[\left(\underset{\left.D_{1, \text { noclick }} \otimes D_{2, \text { click }} \otimes 1_{d}+\frac{1}{2} D_{1, \text { click }} \otimes D_{2, \text { click }} \otimes 1_{d}\right)}{\longleftrightarrow}\right)|n\rangle_{d f g}\langle n|\right] \\
& D \\
& D=\begin{array}{c}
D_{\text {noclick }}=\left(1-d_{\text {dark }}\right)|0\rangle\langle 0| \\
D_{\text {click }}=1-D_{\text {noclick }}
\end{array} \\
& D=\frac{1}{2}\left[1_{d f g}+\left(1-p_{\text {dark }}\right)\left(1_{d} \otimes|0\rangle\left\langle\left. 0\right|_{f} \otimes 1_{g}-1_{d} \otimes 1_{f} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{g}\right)\right.\right. \\
& \quad-\left(1-p_{\text {dark }}\right)^{2}\left(1_{d} \otimes|0\rangle\left\langle\left. 0\right|_{f} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{g}\right)\right]
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
Y_{n} e_{n} & =\frac{1}{2}\left\{1+\left(1-p_{\text {dark }}\right) \frac{1}{2^{n}}\left[\left(2-\eta_{\text {sys }}-\eta_{\text {sys }} \cos 2 \theta\right)^{n}-\left(2-\eta_{\text {sys }}+\eta_{\text {sys }} \cos 2 \theta\right)^{n}\right]\right. \\
& \left.-\left(1-p_{\text {dark }}\right)^{2}\left(1-\eta_{\text {sys }}\right)^{n}\right\}
\end{aligned}
$$

CHARACTERISATION OF PRACTICAL DEVICES

$$
\begin{aligned}
E & =\frac{1}{Q} e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n} e_{n} \\
& =\frac{1}{2 Q}\left[1+\left(1-p_{\text {dark }}\right)\left(e^{-\mu \eta_{\text {sys }} \cos ^{2} \theta}-e^{-\mu \eta_{\text {sys }} \sin ^{2} \theta}\right)-\left(1-p_{\text {dark }}\right)^{2} e^{-\mu \eta_{\mathrm{sys}}}\right]
\end{aligned}
$$

The error rate is directly observed in the experiment.

CHARACTERISATION OF PRACTICAL DEVICES

$$
\begin{aligned}
E & =\frac{1}{Q} e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n} e_{n} \\
& =\frac{1}{2 Q}\left[1+\left(1-p_{\text {dark }}\right)\left(e^{-\mu \eta_{\text {sys }} \cos ^{2} \theta}-e^{-\mu \eta_{\text {sys }} \sin ^{2} \theta}\right)-\left(1-p_{\text {dark }}\right)^{2} e^{-\mu \eta_{\text {sys }}}\right]
\end{aligned}
$$

The error rate is directly observed in the experiment.

Example: BB84 with phase-randomised WCPs

CHARACTERISATION OF PRACTICAL DEVICES

$$
\begin{aligned}
E & =\frac{1}{Q} e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} Y_{n} e_{n} \\
& =\frac{1}{2 Q}\left[1+\left(1-p_{\text {dark }}\right)\left(e^{-\mu \eta_{\mathrm{sys}} \cos ^{2} \theta}-e^{-\mu \eta_{\mathrm{sys}} \sin ^{2} \theta}\right)-\left(1-p_{\text {dark }}\right)^{2} e^{-\mu \eta_{\mathrm{sys}}}\right]
\end{aligned}
$$

The error rate is directly observed in the experiment.

Example: BB84 with phase-randomised WCPs

$$
R \geq q\left\{p_{1} Y_{1}\left[1-h\left(e_{1}\right)\right]-Q h(E)\right\}
$$

q	is the basis-sift factor (known)
$p_{1}=\mu e^{-\mu}$	is the probability that Alice emits a single-photon state (known)
Y_{1}	is the yield of the single-photon states (unknown)
e_{1}	is the phase error of the single photon states (unknown)
Q	is the overall gain of the signal states (observed)
E	is the overall error rate of the signal states (observed)

D. Gottesman, H.-K. Lo, N. Lütkenhaus and 7. Preskill, Quantum Inf. Comput. 4, 325 (2004).

CHARACTERISATION OF PRACTICAL DEVICES

We assume that Q, E, is the same for both basis. Parameter estimation (due to the PNS attack we need to consider the wort-case scenario):
D. Gottesman, H.-K. Lo, N. Lütkenhaus and 7. Preskill, Quantum Inf. Comput. 4, 325 (2004).

CHARACTERISATION OF PRACTICAL DEVICES

We assume that Q, E, is the same for both basis. Parameter estimation (due to the PNS attack we need to consider the wort-case scenario):

$$
Y_{1}=\frac{Q-p_{\text {multi }}}{p_{1}} \quad e_{1}=\frac{E}{1-\frac{p_{\text {multi }}}{Q}}
$$

where $p_{\text {multi }}=1-e^{-\mu}-\mu e^{-\mu}$
D. Gottesman, H.-K. Lo, N. Lütkenhaus and 7. Preskill, Quantum Inf. Comput. 4, 325 (2004).

CHARACTERISATION OF PRACTICAL DEVICES

We assume that Q, E, is the same for both basis. Parameter estimation (due to the PNS attack we need to consider the wort-case scenario):

$$
Y_{1}=\frac{Q-p_{\text {multi }}}{p_{1}} \quad e_{1}=\frac{E}{1-\frac{p_{\text {multi }}}{Q}}
$$

where $p_{\text {multi }}=1-e^{-\mu}-\mu e^{-\mu}$

Example:

$$
\begin{aligned}
p_{\text {dark }} & =10^{-6} \\
e_{d} & =\sin ^{2} \theta=0.015 \\
\eta_{\mathrm{B}} & =0.045 \\
\alpha & =0.2 \mathrm{~dB} / \mathrm{km} \\
q & \approx 1 \\
\mu & \text { optimised }
\end{aligned}
$$

D. Gottesman, H.-K. Lo, N. Litkenhaus and 7. Preskill, Quantum Inf. Comput. 4, 325 (2004).

QKD with decoy states (asymptotic case)

QKD WITH DECOY STATES

Motivation: Better estimation of Y_{1}, e_{1}.

QKD WITH DECOY STATES

Motivation: Better estimation of Y_{1}, e_{1}.

Phase randomized weak coherent pulses

Alice prepares phase-randomised weak coherent pulses whose mean photon number is chosen for each signal from a finite set of possible values.

$$
\rho_{l}=e^{-\mu_{l}} \sum_{n=0}^{\infty} \frac{\mu_{l}^{n}}{n!}|n\rangle\langle n| \text { with } \quad l \in\left\{\mathrm{~s}, \mathrm{~d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{N}}\right\}
$$

W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 (2005).

QKD WITH DECOY STATES

Intuition:

In principle Eve can guess the intensity setting l selected by Alice:
W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 (2005).

QKD WITH DECOY STATES

Intuition:

In principle Eve can guess the intensity setting l selected by Alice:

$$
\begin{aligned}
\rho_{l}=e^{-\mu_{l}} \sum_{n=0}^{\infty} \frac{\mu_{l}^{n}}{n!}|n\rangle\langle n| \quad \mathrm{QND} \longrightarrow \quad p(l \mid n) & =p(n \mid l) \frac{p(l)}{p(n)} \\
& =e^{\mu_{l}} \frac{\mu_{l}^{n}}{n!} \frac{p(l)}{\sum_{l} p(l) e^{\mu_{l}} \mu_{l}^{n} / n!}
\end{aligned}
$$

Key idea: The yields Y_{n} and the error rates e_{n} are equal for the different intensity settings

W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 (2005).

QKD WITH DECOY STATES

How to estimate the parameters Y_{1}, e_{1} ? We have a set of linear equations...
W.-T. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 (2005).

QKD WITH DECOY STATES

How to estimate the parameters Y_{1}, e_{1} ? We have a set of linear equations...

W.-Y. Hwang, PRL 91, 057901 (2003); H.-K. Lo, X. Ma and K. Chen, PRL 94, 230504 (2005); X.-B. Wang, PRL 94, 230503 (2005).

QKD WITH DECOY STATES

For certain cases, as the Poisson distribution, one can obtain analytical bounds for Y_{1}, e_{1}
X. Ma, B. Qi, 1. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005).

QKD WITH DECOY STATES

For certain cases, as the Poisson distribution, one can obtain analytical bounds for Y_{1}, e_{1} X. Ma, B. Oi, r. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005).

In general, one can solve the estimation problem using linear programming,

$$
\begin{array}{ll}
\max c^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x} \leq b \\
& \mathbf{x} \geq 0
\end{array}
$$

where \mathbf{x} is a vector of unknown variables, c and b are vectors whose coefficients are known, and A is a known matrix.

QKD WITH DECOY STATES

For certain cases, as the Poisson distribution, one can obtain analytical bounds for Y_{1}, e_{1} X. Ma, B. Ci, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005).

In general, one can solve the estimation problem using linear programming,

$$
\begin{array}{ll}
\max & c^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x} \leq b \\
& \mathbf{x} \geq 0
\end{array}
$$

where \mathbf{x} is a vector of unknown variables, c and b are vectors whose coefficients are known, and A is a known matrix.

We need a finite number of known/unknown parameters $Q_{l}=e^{-\mu_{l}} \sum_{n=0}^{\infty} \frac{\mu_{l}^{n}}{n!} Y_{n}$

QKD WITH DECOY STATES

For certain cases, as the Poisson distribution, one can obtain analytical bounds for Y_{1}, e_{1} X. Ma, B. Ci, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005).

In general, one can solve the estimation problem using linear programming,

$$
\begin{array}{ll}
\max & c^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x} \leq b \\
& \mathbf{x} \geq 0
\end{array}
$$

where \mathbf{x} is a vector of unknown variables, c and b are vectors whose coefficients are known, and A is a known matrix.

We need a finite number of known/unknown parameters $Q_{l}=e^{-\mu_{l}} \sum_{n=0}^{\infty} \frac{\mu_{l}^{n}}{n!} Y_{n}$

$$
\begin{aligned}
& Q_{l} \geq e^{-\mu_{l}} \sum_{n=0}^{M_{\mathrm{cut}}} \frac{\mu_{l}^{n}}{n!} Y_{n} \\
& Q_{l} \leq e^{-\mu_{l}} \sum_{n=0}^{M_{\mathrm{cut}}} \frac{\mu_{l}^{n}}{n!} Y_{n}+e^{-\mu_{l}} \sum_{n=M_{\mathrm{cut}}+1}^{\infty} \frac{\mu_{l}^{n}}{n!}=e^{-\mu_{l}} \sum_{n=0}^{M_{\mathrm{cut}}} \frac{\mu_{l}^{n}}{n!} Y_{n}+\left(1-e^{-\mu_{l}} \sum_{n=0}^{M_{\mathrm{cut}}} \frac{\mu_{l}^{n}}{n!}\right)
\end{aligned}
$$

QKD WITH DECOY STATES

$\min Y_{1}$
s.t. $\quad Q_{l} \geq e^{-\mu_{l}} \sum_{n=0}^{M_{\text {cut }}} \frac{\mu_{l}^{n}}{n!} Y_{n} \forall l$

$$
\begin{aligned}
Q_{l} & \leq e^{-\mu_{l}} \sum_{n=0}^{M_{\text {cut }}} \frac{\mu_{l}}{n!} Y_{n}+\left(1-e^{-\mu_{l}} \sum_{n=0}^{M_{\text {cut }}} \frac{\mu_{l}}{n!}\right) \quad \forall l \\
& 1 \geq Y_{n} \geq 0
\end{aligned}
$$

This is done for both BB84 basis.

QKD WITH DECOY STATES

$\min Y_{1}$
s.t. $\quad Q_{l} \geq e^{-\mu_{l}} \sum_{n=0}^{M_{\text {cut }}} \frac{\mu_{l}^{n}}{n!} Y_{n} \quad \forall l$

$$
\begin{aligned}
Q_{l} & \leq e^{-\mu_{l}} \sum_{n=0}^{M_{\text {cut }}} \frac{\mu_{l}}{n!} Y_{n}+\left(1-e^{-\mu_{l}} \sum_{n=0}^{M_{\text {cut }}} \frac{\mu_{l}}{n!}\right) \quad \forall l \\
& 1 \geq Y_{n} \geq 0
\end{aligned}
$$

This is done for both BB84 basis.

Similarly, if we define $\gamma_{n}=Y_{n} e_{n}$

$$
\begin{array}{ll}
\max & \gamma_{1} \\
\text { s.t. } & E_{l} Q_{l} \geq e^{-\mu_{l}} \sum_{n=0}^{M_{\mathrm{cut}}} \frac{\mu_{l}^{n}}{n!} \gamma_{n} \forall l \\
& E_{l} Q_{l} \leq e^{-\mu_{l}} \sum_{n=0}^{M_{\mathrm{cut}}} \frac{\mu_{l}^{n}}{n!} \gamma_{n}+\left(1-e^{-\mu_{l}} \sum_{n=0}^{M_{\mathrm{cut}}} \frac{\mu_{l}^{n}}{n!}\right) \quad \forall l \\
& 1 \geq \gamma_{n} \geq 0
\end{array}
$$

QKD WITH DECOY STATES

$$
R \geq q\left\{p_{1 \mid \mathrm{s}} Y_{1}\left[1-h\left(e_{1}\right)\right]-Q_{\mathrm{s}} h\left(E_{\mathrm{s}}\right)\right\}
$$

$p_{1, \mathrm{~s}}=\mu_{\mathrm{s}} e^{-\mu_{\mathrm{s}}}$ is the conditional probability that Alice emits a single-photon state when she uses the signal intensity setting (knozen)
$Q_{s} \quad$ is the overall gain of the signal states (observed)
$E_{s} \quad$ is the overall error rate of the signal states (observed)

QKD WITH DECOY STATES

$$
R \geq q\left\{p_{1 \mid \mathrm{s}} Y_{1}\left[1-h\left(e_{1}\right)\right]-Q_{\mathrm{s}} h\left(E_{\mathrm{s}}\right)\right\}
$$

$p_{1, \mathrm{~s}}=\mu_{\mathrm{s}} e^{-\mu_{\mathrm{s}}}$ is the conditional probability that Alice emits a single-photon state when she uses the signal intensity setting (knozen)
$Q_{s} \quad$ is the overall gain of the signal states (observed)
$E_{s} \quad$ is the overall error rate of the signal states (observed)

If we use the channel model described before:

Example:

$$
\begin{aligned}
p_{\text {dark }} & =10^{-6} \\
e_{d} & =\sin ^{2} \theta=0.015 \\
\eta_{\mathrm{B}} & =0.045 \\
\alpha & =0.2 \mathrm{~dB} / \mathrm{km} \\
q & \approx 1 \\
\mu & \text { optimised }
\end{aligned}
$$

D. Gottesman, H.-K. Lo, N. Littkenhaus and 7. Preskill, Quantum Inf. Comput. 4, 325 (2004).

Parameter estimation (finite case)

PARAMETER ESTIMATION (FINITE CASE)

In any experiment Alice only sends a finite number of signals. When the sifting conditions are met we have that

PARAMETER ESTIMATION (FINITE CASE)

In any experiment Alice only sends a finite number of signals. When the sifting conditions are met we have that

Z basis
To compute the
error rate

$\left|Z_{d_{N}}\right|$ \square

$$
\left|X_{\mathrm{s}}\right|
$$

$$
\left|X_{\mathrm{d}_{1}}\right|
$$

$$
\left|X_{\mathrm{d}_{2}}\right|
$$

$$
\left|X_{\mathrm{d}_{\mathrm{N}}}\right|
$$

We need to compute a lower bound for the number of single photons and an upper bound for their phase error rate in the set \square

PARAMETER ESTIMATION (FINITE CASE)

Actual protocol (let us focus, for instance, in the Z basis):
Alice chooses an intensity setting l with probability $p(l \mid Z)$

$$
\rho_{l}=e^{-\mu_{l}} \sum_{n=0}^{\infty} \frac{\mu_{l}^{n}}{n!}|n\rangle\langle n|
$$

PARAMETER ESTIMATION (FINITE CASE)

Actual protocol (let us focus, for instance, in the Z basis):
Alice chooses an intensity setting l with probability $p(l \mid \mathrm{Z})$

$$
\rightleftharpoons \rho_{l}=e^{-\mu_{l}} \sum_{n=0}^{\infty} \frac{\mu_{l}^{n}}{n!}|n\rangle\langle n|
$$

Equivalent protocol:

For each signal, Alice first chooses a photon number n with probability

$$
p(n \mid \mathrm{Z})=\sum_{l} p(l \mid \mathrm{Z}) p(n \mid l, \mathrm{Z})
$$

After Bob declares the detected events, Alice decides the intensity setting l with probability

$$
p(l \mid n, \mathrm{Z})=p(n \mid l, \mathrm{Z}) \frac{p(l \mid \mathrm{Z})}{p(n \mid \mathrm{Z})}
$$

PARAMETER ESTIMATION (FINITE CASE)

Let S_{n} denote the number of signals sent by Alice with n photons, when both Alice and Bob select the basis Z , and Bob obtains a click in his measurement apparatus.

$$
\sum_{l}\left|Z_{l}\right|=\sum_{n} S_{n}
$$

Set of detected events

PARAMETER ESTIMATION (FINITE CASE)

Let S_{n} denote the number of signals sent by Alice with n photons, when both Alice and Bob select the basis Z , and Bob obtains a click in his measurement apparatus.

$$
\sum_{l}\left|Z_{l}\right|=\sum_{n} S_{n}
$$

Set of detected events

Using the equivalent protocol we expect to be able to write:

We will be able to obtain the parameters S_{n}, in particular S_{1}

PARAMETER ESTIMATION (FINITE CASE)

How to bound the fluctuation term $\delta_{l} \rightarrow$ Example: Chernoff bound

PARAMETER ESTIMATION (FINITE CASE)

How to bound the fluctuation term $\delta_{l} \quad \rightarrow \quad$ Example: Chernoff bound
Claim 1. Let $X_{1}, X_{2}, \ldots, X_{n}$, be a set of independent Bernoulli trials that satisfy $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$. And, let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X]=\sum_{i}^{n} p_{i}$, where $E[\cdot]$ is the mean value. Then, we have that

$$
\begin{equation*}
X=\mu+\delta \tag{B1}
\end{equation*}
$$

except with error probability $\gamma=\varepsilon+\hat{\varepsilon}$, where the parameter $\delta \in[-\Delta, \hat{\Delta}]$, with $\Delta=g\left(X, \varepsilon^{2(4+\sqrt{7})^{2} / 9}\right)$ and $\hat{\Delta}=g\left(X, \hat{\varepsilon}^{3}\right)$, and the function $g(x, y)=\sqrt{x \ln \left(y^{-1}\right)}$, given that $\max \left\{\hat{\varepsilon}^{-1 / X}, \varepsilon^{-1 / X}\right\} \leq$ $\exp (1 / 3)$.

PARAMETER ESTIMATION (FINITE CASE)

How to bound the fluctuation term $\delta_{l} \rightarrow$ Example: Chernoff bound
Claim 1. Let $X_{1}, X_{2}, \ldots, X_{n}$, be a set of independent Bernoulli trials that satisfy $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$. And, let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X]=\sum_{i}^{n} p_{i}$, where $E[\cdot]$ is the mean value. Then, we have that

$$
\begin{equation*}
X=\mu+\delta \tag{B1}
\end{equation*}
$$

except with error probability $\gamma=\varepsilon+\hat{\varepsilon}$, where the parameter $\delta \in[-\Delta, \hat{\Delta}]$, with $\Delta=g\left(X, \varepsilon^{2(4+\sqrt{7})^{2} / 9}\right)$ and $\hat{\Delta}=g\left(X, \hat{\varepsilon}^{3}\right)$, and the function $g(x, y)=\sqrt{x \ln \left(y^{-1}\right)}$, given that $\max \left\{\hat{\varepsilon}^{-1 / X}, \varepsilon^{-1 / X}\right\} \leq$ $\exp (1 / 3)$.

This implies that

$$
\left|Z_{l}\right|=\sum_{n} p(l \mid n, \mathrm{Z}) S_{n}+\delta_{l}
$$

except with error probability $\gamma_{l}=\epsilon_{l}+\hat{\epsilon}_{l}$, where $\delta_{l} \in\left[-\Delta_{l}, \hat{\Delta}_{l}\right]$, with

$$
\begin{aligned}
& \Delta_{l}=g\left(\left|Z_{l}\right|, \epsilon_{l}^{2(4+\sqrt{7})^{2} / 9}\right) \\
& \hat{\Delta}_{l}=g\left(\left|Z_{l}\right|, \hat{\epsilon}_{l}^{3}\right)
\end{aligned} \quad \begin{aligned}
& \text { Importantly, the fluctuation term is } \\
& \text { bounded by observed quantities and } \\
& \text { the tolerated failure probability }
\end{aligned}
$$

PARAMETER ESTIMATION (FINITE CASE)

We have more conditions: $N_{n} \geq S_{n} \geq 0$
N_{n} : Number of signals sent by Alice with n photons, when she and Bob select the Z basis.

PARAMETER ESTIMATION (FINITE CASE)

We have more conditions: $N_{n} \geq S_{n} \geq 0$
N_{n} : Number of signals sent by Alice with n photons, when she and Bob select the Z basis.

Using Chernoff inequality, we have that

$$
\begin{aligned}
& p\left(N_{n} \geq N\left[p(n \mid \mathrm{Z})+\xi_{n}\right]\right) \leq e^{-N \xi_{n}^{2} /\left[2\left(p(n \mid \mathrm{Z})+\xi_{n}\right)\right]} \\
& p\left(N_{n} \leq N\left[p(n \mid \mathrm{Z})-\xi_{n}\right]\right) \leq e^{-N \xi_{n}^{2} /[2 p(n \mid \mathrm{Z})]}
\end{aligned}
$$

where $N=\sum_{n} N_{n}$ is the number of signals sent by Alice and measured by Bob in the Z basis

PARAMETER ESTIMATION (FINITE CASE)

We have more conditions: $N_{n} \geq S_{n} \geq 0$
N_{n} : Number of signals sent by Alice with n photons, when she and Bob select the Z basis.

Using Chernoff inequality, we have that

$$
\begin{aligned}
p\left(N_{n} \geq N\left[p(n \mid \mathrm{Z})+\xi_{n}\right]\right) & \leq e^{-N \xi_{n}^{2} /\left[2\left(p(n \mid \mathrm{Z})+\xi_{n}\right)\right]} \\
p\left(N_{n} \leq N\left[p(n \mid \mathrm{Z})-\xi_{n}\right]\right) & \leq e^{-N \xi_{n}^{2} /[2 p(n \mid \mathrm{Z})]}
\end{aligned}
$$

where $N=\sum_{n} N_{n}$ is the number of signals sent by Alice and measured by Bob in the Z basis
Equivalently, we can say that $N_{n}=N\left[p(n \mid \mathrm{Z})+\delta_{n}\right]$
except with error probability $\gamma_{n}=\epsilon_{n}+\hat{\epsilon}_{n}$, where $\delta_{n} \in\left[-\Delta_{n}, \hat{\Delta}_{n}\right]$, with

$$
\begin{aligned}
& \Delta_{n}=\min \left\{g\left[p(n \mid \mathrm{Z}) / N, \epsilon_{n}^{2}\right], p(n \mid \mathrm{Z})\right\} \\
& \hat{\Delta}_{n}=\min \left\{f\left[N, p(n \mid \mathrm{Z}), \hat{\epsilon}_{n}\right], 1-p(n \mid \mathrm{Z})\right\}
\end{aligned} \quad \text { We also use } N \geq N_{n} \geq 0
$$

where $g(x, y)=\sqrt{x \ln \left(y^{-1}\right)}$ and $f(x, y, z)=\ln \left(z^{-1}\right)\left[1+\sqrt{1+2 x y / \ln \left(z^{-1}\right)}\right] / x$

PARAMETER ESTIMATION (FINITE CASE)

Based on the foregoing:
$\min S_{1}$

$$
\begin{array}{ll}
\text { s.t. } & \left|Z_{l}\right|=\sum_{n=0}^{\infty} p(l \mid n, \mathrm{Z}) S_{n}+\delta_{l}, \quad \forall l \\
& \hat{\Delta}_{l} \geq \delta_{l} \geq-\Delta_{l}, \quad \forall l \\
& \left.\sum_{l} \delta_{l}=0, \quad \forall l \quad \text { (from the condition } \quad \sum_{l}\left|Z_{l}\right|=\sum_{n} S_{n}\right) \\
& N\left[p(n \mid \mathrm{Z})+\delta_{n}\right] \geq S_{n} \geq 0, \quad \forall n \\
& \hat{\Delta}_{n} \geq \delta_{n} \geq-\Delta_{n}, \quad \forall n
\end{array}
$$

except with error probability ϵ_{1} given by $\epsilon_{1} \leq \sum_{l} \gamma_{l}+\sum_{n} \gamma_{n}$
Unknozen parameters: $S_{n}, \delta_{l}, \delta_{n}$

PARAMETER ESTIMATION (FINITE CASE)

Based on the foregoing:
$\min S_{1}$

$$
\begin{array}{ll}
\text { s.t. } & \left|Z_{l}\right|=\sum_{n=0}^{\infty} p(l \mid n, \mathrm{Z}) S_{n}+\delta_{l}, \quad \forall l \\
& \hat{\Delta}_{l} \geq \delta_{l} \geq-\Delta_{l}, \quad \forall l \\
& \left.\sum_{l} \delta_{l}=0, \quad \forall l \quad \text { (from the condition } \quad \sum_{l}\left|Z_{l}\right|=\sum_{n} S_{n}\right) \\
& N\left[p(n \mid \mathrm{Z})+\delta_{n}\right] \geq S_{n} \geq 0, \quad \forall n \\
& \hat{\Delta}_{n} \geq \delta_{n} \geq-\Delta_{n}, \quad \forall n
\end{array}
$$

except with error probability ϵ_{1} given by $\epsilon_{1} \leq \sum_{l} \gamma_{l}+\sum_{n} \gamma_{n}$
Unknozen parameters: $S_{n}, \delta_{l}, \delta_{n}$

This linear optimisation problem can be solved analytically or numerically using linear programming

PARAMETER ESTIMATION (FINITE CASE)

Example: Solution using linear programming. We reduce the number of unknown parameters to a finite set:

PARAMETER ESTIMATION (FINITE CASE)

Example: Solution using linear programming. We reduce the number of unknown parameters to a finite set:

$$
\begin{array}{ll}
\min & S_{1} \\
\text { s.t. } & \left|Z_{l}\right| \geq \sum_{n \in \mathcal{S}_{\text {cut }}} p(l \mid n, Z) S_{n}+\delta_{l}, \quad \forall l \\
& \left|Z_{l}\right| \leq \sum_{n \in \mathcal{S}_{\text {cut }}} p(l \mid n, Z) S_{n}+\delta_{l}+\max _{j \notin \mathcal{S}_{\text {cut }}} p(l \mid j, Z) N\left[1-\sum_{n \in \mathcal{S}_{\text {cut }}}\left(p(n \mid Z)+\delta_{n}\right)\right], \quad \forall l \\
& \hat{\Delta}_{l} \geq \delta_{l} \geq-\Delta_{l}, \quad \forall l \\
& \sum_{l} \delta_{l}=0, \quad \forall l \\
& N\left[p(n \mid \mathrm{Z})+\delta_{n}\right] \geq S_{n} \geq 0, \quad \forall n \in \mathcal{S}_{\text {cut }} \\
& \hat{\Delta}_{n} \geq \delta_{n} \geq-\Delta_{n}, \quad \forall n \in \mathcal{S}_{\text {cut }}
\end{array}
$$

except with error probability ϵ_{1} given by $\epsilon_{1} \leq \sum_{l} \gamma_{l}+\sum_{n \in \mathcal{S}_{\text {cut }}} \gamma_{n}$
Here: $\mathcal{S}_{\text {cut }}=\left\{n: 0 \leq n \leq M_{\text {cut }}\right\}$

PARAMETER ESTIMATION (FINITE CASE)

S_{1} is a lower bound for the number of single photon in the Z basis:

PARAMETER ESTIMATION (FINITE CASE)

S_{1} is a lower bound for the number of single photon in the Z basis:

PARAMETER ESTIMATION (FINITE CASE)

S_{1} is a lower bound for the number of single photon in the Z basis:

Using again Chernoff bound: $\quad n_{1} \geq p(\mathrm{~s} \mid 1, \mathrm{Z}) \frac{n_{\mathrm{s}}}{\left|Z_{\mathrm{s}}\right|} S_{1}-\Delta_{1}$ except with error probability ϵ_{1}^{\prime}, where:

$$
\Delta_{1}=g\left(p(\mathrm{~s} \mid 1, \mathrm{Z}) \frac{n_{\mathrm{s}}}{\left|Z_{\mathrm{s}}\right|} S_{1}, \epsilon_{1}^{\prime 2}\right)
$$

Total error probability in the estimation of $n_{1}: \varepsilon_{1} \leq \epsilon_{1}^{\prime}+\sum_{l} \gamma_{l}+\sum_{n \in \mathcal{S}_{\mathrm{cut}}} \gamma_{n}$

PARAMETER ESTIMATION (FINITE CASE)

Let us know calculate the phase error of the single photons:

PARAMETER ESTIMATION (FINITE CASE)

Let us know calculate the phase error of the single photons:

Using the same techniques as before we can obtain a lower bound for S_{1} (in the X basis) and an upper bound for the number of errors \bar{e}_{1} associated to single-photon events in the X basis

PARAMETER ESTIMATION (FINITE CASE)

Let us know calculate the phase error of the single photons:

Using the same techniques as before we can obtain a lower bound for S_{1} (in the X basis) and an upper bound for the number of errors \bar{e}_{1} associated to single-photon events in the X basis

Now we can use a result from random sampling without replacement:

$e_{1} ?$	\bar{e}_{1}
n_{1}	S_{1}

PARAMETER ESTIMATION (FINITE CASE)

Let us know calculate the phase error of the single photons:

Using the same techniques as before we can
 obtain a lower bound for S_{1} (in the X basis) and an upper bound for the number of errors \bar{e}_{1} associated to single-photon events in the X basis

Now we can use a result from random sampling without replacement:

$e_{1} ?$	\bar{e}_{1}
n_{1}	S_{1}

$e_{1} \leq \min \left\{\left[n_{1}\left(\frac{\bar{e}_{1}}{S_{1}}\right)+\left(n_{1}+S_{1}\right) \Omega\left(n_{1}, S_{1}, \epsilon_{e}\right)\right\rceil, n_{1} / 2\right\}$ with $\Omega(x, y, z)=\sqrt{(x+1) \ln \left(z^{-1}\right) /(2 y(x+y))}$
except with error probability $\epsilon_{e_{1}} \leq \epsilon_{e}+\sum_{l}\left(\gamma_{l}+\gamma_{l, e}\right)+\sum_{n \in \mathcal{S}_{\mathrm{cut}}} \gamma_{n}$
R. 7. Serfing, Ann. Statist. 2 (1), 39-48 (1974).

Side-channels

SIDE-CHANNELS

Are experimental implementations of QKD really secure?

SIDE-CHANNELS

Are experimental implementations of QKD really secure?

SIDE-CHANNELS

The security proof of a QKD system typically includes several steps

Actual physical devices

Quantum optical model
 e.g. mode based

Security model

e.g. qubit based

Modelling

e.g. realistic laser sources beamsplitters model threshold detectors model

Reduction to essentials e.g. tagging, squashing

Entanglement distillation Information theoretic

Security proof

From a mathematical model for employed devices we can provide a scientific (mathematical and physical) universally composable security proof for QKD: perfect key except with probability ε

SIDE-CHANNELS

Modelling of real devices: What can go wrong?

SIDE-CHANNELS

Modelling of real devices: What can go wrong?

State preparation:

- Does the source emit coherent states?
- Are the states truly phase-randomised?
- Are we preparing perfect BB84 states?
- Are the states single-mode?
- Consider intensity fluctuations in the source...

SIDE-CHANNELS

Modelling of real devices: What can go wrong?

State preparation:

- Does the source emit coherent states?
- Are the states truly phase-randomised?
- Are we preparing perfect BB84 states?
- Are the states single-mode?
- Consider intensity fluctuations in the source...

If we know the imperfections we can include them in the security proof

SIDE-CHANNELS

Modelling of real devices: What can go wrong?
State preparation:

- Does the source emit coherent states?
- Are the states truly phase-randomised?
- Are we preparing perfect BB84 states?
- Are the states single-mode?
- Consider intensity fluctuations in the source...

If we know the imperfections we can include them in the security proof

Measurement device:

- Problem with efficiency mismatch
- Take into account the dead-time of the detectors
- Guarantee that the BS (passive receiver) cannot be controlled by Eve (e.g. wavelength dependence)
-

:

- Do the detectors behave as we expect?

SIDE-CHANNELS

Modelling of real devices: What can go wrong?
State preparation:

- Does the source emit coherent states?
- Are the states truly phase-randomised?
- Are we preparing perfect BB84 states?
- Are the states single-mode?
- Consider intensity fluctuations in the source...

If we know the imperfections we can include them in the security proof

Measurement device:

- Problem with efficiency mismatch
- Take into account the dead-time of the detectors
- Guarantee that the BS (passive receiver) cannot be controlled by Eve (e.g. wavelength dependence)
:
:

- Do the detectors behave as we expect?

The weakest link in a QKD system is the measurement device

SIDE-CHANNELS

Quantum hacking: Blinding attack

- NTNU

Norwegian University of
Science and Technology

nature photonics

nature.com $\stackrel{\text { journal }}{ }$ home $\stackrel{\text { archive }}{ } \stackrel{\text { issue }}{ }$ / letter $\stackrel{\text { abstract }}{ }$
$\bar{\Longrightarrow}$ ARTICLE PREVIEW
view full accoss options -

NATURE PHOTONICS | LETTER

Hacking commercial quantum cryptography systems by tailored bright illumination

Lars Lydersen, Carlos Wiechers, Christoffer Wittmann, Dominique Elser, Johannes Skaar \& Vadim Makarov
Affiliations | Contributions | Corresponding author
Nature Photonics 4, 686-689 (2010) | doi:10.1038/nphoton. 2010.214 Received 02 April 2010 | Accepted 11 July 2010 | Published online 29 August 2010

Abstract

Abstract • Author information - Supplementary information

The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics 1, 2, 3, 4. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons ${ }^{5}$. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remotecontrolled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in mos QKD systems using avalanche photodiodes to detect single photons. We
believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.

Subject terms: Quantum optics

SIDE-CHANNELS

Eavesdropping 100% of the key on installed QKD line.

I. Gerhardt et al., Nature Comm. 2, 349 (2011).

See also:

1. Zhao et al., Phys. Rev. A 78, 042333 (2008).
N. Jain et al., Phys. Rev. Lett. 107, 110501 (2011).
H. Weier et al., New 7. Phys. 13, 073024 (2011)

SIDE-CHANNELS

Bridging the gap between theory and practice...

SIDE-CHANNELS

Bridging the gap between theory and practice...

Option 1: "Patches"

- Abandon the provable security model of QKD
- Can often be defeated by hacking advances

SIDE-CHANNELS

Bridging the gap between theory and practice...

Option 1: "Patches"

- Abandon the provable security model of QKD
- Can often be defeated by hacking advances

Option 2: Integrate imperfections into the security proof

- Typically, it may need deep modification of the protocol, hardware and security proof
- Device-independent quantum key distribution (avoids the hardverifiable requirement of completely characterizing real devices)

SIDE-CHANNELS

Device independent QKD (diQKD)/Self-testing QKD

D. Mayers and A. C.-C. Yao, in Proc. 39th Annual Symposium on Foundations of Computer Science (FOCS98), p. 503 (1998); A. Acin et al., Phys. Rev. Lett. 98, 230501 (2007); A. Acín, N. Gisin and Ll. Masanes, Phys. Rev. Lett. 97, 120405 (2006).

SIDE-CHANNELS

Device independent QKD (diQKD)/Self-testing QKD

We still need some assumptions: validity of QM, true RNG, Alice and Bob shielded from Eve, no memory, ... Removes the problem of full characterising real devices!
D. Mayers and A. C.-C. Yao, in Proc. 39th Annual Symposium on Foundations of Computer Science (FOCS98), p. 503 (1998); A. Acín et al., Phys. Rev. Lett. 98, 230501 (2007); A. Acín, N. Gisin and Ll. Masanes, Phys. Rev. Lett. 97, 120405 (2006).

SIDE-CHANNELS

Device independent QKD (diQKD)/Self-testing QKD

We still need some assumptions: validity of QM, true RNG, Alice and Bob shielded from Eve, no memory, ... Removes the problem of full characterising real devices!

BASIC idea: The existence of entanglement => possibility of secure key generation
Bell inequalities test $=>$ Entanglement verification
Alice and Bob can perform Bell inequality test with untrusted devices
If $p(a, b \mid x, y)$ violates some Bell inequality, then $p(a, b \mid x, y)$ contains secrecy irrespectively of the implementation!

Advantage: diQKD eliminates ALL potential side-channels
D. Mayers and A. C.-C. Yao, in Proc. 39th Annual Symposium on Foundations of Computer Science (FOCS98), p. 503 (1998); A. Acín et al., Phys. Rev. Lett. 98, 230501 (2007); A. Acín, N. Gisin and Ll. Masanes, Phys. Rev. Lett. 97, 120405 (2006).

SIDE-CHANNELS

Now... let's go to the lab

SIDE-CHANNELS

Now... let's go to the lab

We need to violate a Bell inequality loophole-free $\quad \rightarrow \quad$ Very hard!

Patch: random/deterministic assignment for lost signals \longrightarrow increase error rate \longrightarrow loss of violation

SIDE-CHANNELS

Now... let's go to the lab

We need to violate a Bell inequality loophole-free $\quad \rightarrow \quad$ Very hard!

Patch: random/deterministic assignment for lost signals \longrightarrow increase error rate \longrightarrow loss of violation

Required detection efficiency > 82.8\%

Detection loophole

But the transmission efficiency of 5 km of telecom fiber is roughly 80%; typical detection efficiencies are 10-15\%

SIDE-CHANNELS

Fair-sampling device

N. Gisin, S. Pironio and N. Sangouard, Phys. Rev. Lett. 105, 070501 (2010); N. Sangouard et al., Phys. Rev. Lett. 106, 120403 (2011); M. Curty and T. Moroder, Phys. Rev. A 84, 010304(R) (2011).

SIDE-CHANNELS

Fair-sampling device

In Bell tests \longrightarrow assume that the set of detected photon pairs is a fair set (fair-sampling assumption). It is reasonable to assume that Nature is not malicious.
In diQKD, however, we fight against a possible active adversary.

Reduce channel loss via a "fair-sampling device" (leaves only problem of detection efficiency)

[^0]
SIDE-CHANNELS

Fair-sampling device

In Bell tests \longrightarrow assume that the set of detected photon pairs is a fair set (fair-sampling assumption). It is reasonable to assume that Nature is not malicious.
In diQKD, however, we fight against a possible active adversary.

Reduce channel loss via a "fair-sampling device" (leaves only problem of detection efficiency)
Heralded qubit amplifier

For simplicity, qubit amplifier only on Bob's side

A simpler quantum relay works as well even with SPDC sources!
N. Gisin, S. Pironio and N. Sangouard, Phys. Rev. Lett. 105, 070501 (2010); N. Sangouard et al., Phys. Rev. Lett. 106, 120403 (2011);
M. Curty and T. Moroder, Phys. Rev. A 84, 010304(R) (2011).

SIDE-CHANNELS

What performance can we expect in practice?

SIDE-CHANNELS

What performance can we expect in practice?

Simulation with

- Full-mode analysis [in contrast to perturbation approach]
- Detector, coupling efficiencies
- Optimization over variable parameters

Equipment:

* Standard PDC as entangled \& heralded PDC as single photon sources
* Photon number resolving detectors
M. Curty and T. Moroder, Phys. Rev. A 84, $010304(R)$ (2011).

See also: D. Pitkünen et al., Phys. Rev. A 84, 022325 (2011).

Limitations:

Requires near unity detection efficiency
An extremely low key rate (of order 10-8-10-10 per pulse) at practical distances
di-QKD is a very beautiful idea but impractical with current technology => Need to improve entanglement sources, couplers and detectors!

"Original" qubit amplifier (dashed line) quantum relay (solid line). Upper figure shows a security analysis from Gisin et al. [PRL 105, 070501 (2010)]. Lower figure shows the conservative situation of assigning inconclusive to conclusive results deterministically.

SIDE-CHANNELS

Rethink the problem: Most side channel attacks occur in the detectors

SIDE-CHANNELS

Rethink the problem: Most side channel attacks occur in the detectors

SIDE-CHANNELS

Rethink the problem: Most side channel attacks occur in the detectors

Give Eve the detectors!

Measurement-device independent QKD

A practical way to do QKD with "untrusted detectors"
Automatically immune to all detector side-channel attacks (existing and yet to be discovered)
No need to certify the measurement device (it can be even manufactured by a malicious eavesdropper, Eve). This is good news for QKD stardardisation and certification by European Telecommunications Standards Institute (ETSI)
H.-K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012); E. Biham, B. Hutner and T. Mor, Phys. Rev. A 54, 2651-2658 (1996); H. Inamori, Algorithmica 34, 340-365 (2002).

SIDE-CHANNELS

Intuition why it can be secure:

SIDE-CHANNELS

Intuition why it can be secure:

The result of the Bell measurement reveals correlations between Alice and Bob's bits but not the value of the individual bits

SIDE-CHANNELS

Measurement-device independent QKD

H.-K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).

SIDE-CHANNELS

Measurement-device independent QKD

$R \geq p_{1,1, \mathrm{Z}} Y_{1,1, \mathrm{Z}}\left[1-h\left(e_{1,1, \mathrm{X}}\right)\right]-Q_{\mathrm{Z}} h\left(E_{\mathrm{Z}}\right)$

Z basis for key generation X basis for testing only
Q_{Z} and E_{Z} can be measured directly from the experiment.
$Y_{1,1, \mathrm{Z}}$ and $e_{1,1, \mathrm{X}}$ are estimated using decoy states
H.-K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).

SIDE-CHANNELS

Simulation results (finite-key case):

The experimental parameters are: $\alpha=0.2 \mathrm{~dB} / \mathrm{km}, \eta_{\mathrm{B}}=14.5 \%, Y_{0}=6.02 \times 10^{-6}$ and the security bound $\epsilon=10^{-10}$. The misalignment in the first figure is 1.5%

If Alice and Bob use laser diodes at 1 GHz repetition rate, and each of them sends $N=10^{13}$ signals, we find, for instance, that they can distribute a 1 Mb secret key over a 75 km fiber link in less than 3 hours.
M. Curty at al., preprint arXiv:1307:1081.

SIDE-CHANNELS

Let's return to the lab...

SIDE-CHANNELS

Let's return to the lab...

A. Rubenok et al., preprint arXiv:1204.0738

r. Liu et al., preprint arXiv:1209.6178

T. Ferreira da Silva et al., preprint arXiv:1207.6345

z. Tang et al., preprint arXiv:1306.6134

THANK YOU FOR YOUR ATTENTION

[^0]: N. Gisin, S. Pironio and N. Sangouard, Phys. Rev. Lett. 105, 070501 (2010); N. Sangouard et al., Phys. Rev. Lett. 106, 120403 (2011);
 M. Curty and T. Moroder, Phys. Rev. A 84, 010304(R) (2011).

