

Continuous Variable Entropic Uncertainty Relations in the Presence of Quantum Memory

QCRYPT 2013 - Waterloo - 9. Aug. 2013

Fabian Furrer

The University of Tokyo, Graduate School of Science

JOINT WORK WITH:

MARIO BERTA, VOLKHER SCHOLZ, MATTHIAS CHRISTANDL ETH ZURICH

MARCO TOMAMICHEL CQT SINGAPORE

Motivation Some History

Position and Momentum Operators:

Heisenberg's Uncertainty Relation

 $\sqrt{Var(Q)Var(P)} \ge \hbar/2$

Generalization to Entropies (Beckner 75, I. Bialynicki-Birula and J. Mycielski. 75)

 $h(Q) + h(P) \ge \log e\pi$

Finite dimensional (Massen and Uffink 88):

$$H(S) + H(T) \ge -\log c$$
 $c = \max_{k,l} |< s_k |t_l > |^2$

Motivation: Uncertainty Principle in the Presence of Quantum Memory

Example: A & B share maximally entangled qubits and $S=\sigma_Z$, $T=\sigma_X$

- **D** no uncertainty for Bob
- maximal uncertainty for Charlie: completely uncorrelated to Alice and Alice's state is maximally mixed

Combines uncertainty principle with monogomay of entanglement.

Motivation: Uncertainty Principle in the Presence of Quantum Memory

Constraint on the sum of the uncertainty of Q w.r.t. Bob and P w.r.t. Eve:

 $H(S|B) + H(T|E) \ge -\log c$

H(S|B) = H(SB) - H(B) von conditional Neumann entropy of $\rho_{SB} = \sum_{s} P(s)|s > < s| \otimes \rho_{B}^{s}$.

Exactly what we use in Quantum Key Distribution Protocols!

M. Berta et al., Nature Physics 6, 2010

20/08/2013

Motivation: The connection between QKD and the Uncertainty Principle with Quantum Memory

Motivation: Application of the Uncertainty Principle with Quantum Memory in QKD Security Proofs

Discrete Protocol:

Security of BB84 Protocol against coherent attacks including finite-size effects M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Nat. Commun. 3, 634 (2012).

Continuous Variable Protocol:

Security of two-mode squeezed state against coherent attacks including finite-size effects FF, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Phys. Rev. Lett. 109, 100502 (2012)

□ first quantitative analyses against coherent attacks!

using a binning of the continuous outcomes measurements into a finite number of outcomes

□ Implementation:

Realization of finite-size continuous-variable quantum key distribution based on Einstein-Podolsky-Rosen entanglement

Tobias Eberle, and Vitus Händchen, Fabian Furrer, Torsten Franz, Jörg Duhme, Reinhard F. Werner, and Roman Schnabel

Our Contribution

Generalize Uncertainty Principle to

- > continuous outcomes (e.g., Position-Momentum Operators)
- > arbitrary (infinite-dimensional) quantum memories

Entropy Measures:

- > generalize differential conditional von Neumann entropy (**asymptotic limit**)
- > introduce differential conditional min-/max-entropy (finite-size QKD!)

Related work:

- For restricted definition of diff. cond. von Neumann entropy: R. L. Frank, E. H. Lieb, arXiv:1204.0825
- For min-/max-entropy with arbitrary quantum memories but finite number of outcomes: M. Berta, FF, V. Scholz, arXiv:1107.5460

Our Contribution

Generalize Uncertainty Principle to

> continuous outcomes (e.g., Position-Momentum Operators)

> arbitrary (infinite-dimensional) quantum memories

Entropy Measures:

generalize differential conditional von Neumann entropy (asymptotic limit)

introduce differential conditional min-/max-entropy (finite-size QKD!)

Related work:

- For restricted definition of cond. von Neumann entropy: R. L. Frank, E. H. Lieb, arXiv:1204.0825
- For min-/max-entropy with arbitrary quantum memories but finite number of outcomes: M. Berta, FF, V. Scholz, arXiv:1107.5460

Outlook

- I. Continuous Variable Systems
 - Position and Momentum Operators
- II. Differential Conditional von Neumann Entropy
 - Approximation by finer and finer coarse graining
- **III.** Uncertainty Relations in Presence of Quantum Memory
 - **Finite precision position-momentum measurements**
 - Infinite precision position-momentum measurements

Continuous Variable (CV) Systems

Most Important Example in Quantum Information processing:

Quadratures of em-field (continuous degree of freedom)

Measurement: Homodyne detection

Model for one mode:

- Equivalent to Harmonic Oscillator
- Infinite-dimensional Hilbert space (square integrable functions)
- Quadrature Measurement with phase shift $\phi = \frac{\pi}{2}$: P, Q satisfying

$$[Q,P]=i$$

Position & Momentum Operators: Continuous spectrum!

Position & Momentum Mesurements

Continuous Outcomes (infinite precision):

Outcome:

 $x \in X = \text{Real Line}$

 $\rho_B(x) = \text{post-}$ measurement state

Continuous probability distribution & set of postmeasurement states:

 ρ_{XB} "=" $P(x), \{\rho_B(x)\}$

Position & Momentum Mesurements

Discrete Outcomes (finite precision):

Position & Momentum Mesurements

Continuous Outcomes (infinite precision):

II. Differential Conditional Entropies

Our approach to differential conditional entropies:

A unified definition of conditional entropies continuous in the limit of finer and finer coarse graining!

Further:

- Most General Setting
- No restriction on the states (important for QKD)

II. Differential Conditional Entropies: The Conditional von Neumann Entropy

Y finite discrete, B finite-dimensional system:

H(Y|B) = H(YB) - H(B)

- $\rho_{YB} = \sum_{y} p_{y} | y \rangle \langle y | \otimes \rho_{B}^{y}$ "=" p_{y} , { ρ_{B}^{y} }, $H(\rho) = -tr \rho \log \rho$
- $H(Y|B) = -\sum_{y} D(p_{y}\rho_{B}^{y}||\rho_{B})$ with $D(\rho||\sigma) = tr\rho\log\rho tr\rho\log\sigma$ quantum relative entropy (arbitrary quantum systems, Araki '76)

Definition: (X, μ) measure space

$$h(X|B) = -\int D(P(x)\rho_B(x)||\rho_B)d\mu(x)$$

• X = real line: $h(X|B) = -\int D(P(x)\rho_B(x)||\rho_B)dx$: differential entropy

• X = discrete: $H(X|B) = -\sum_{x} D(p_x \rho_B^x || \rho_B)$ (capital letter)

II. Differential Conditional Entropies: Discrete Approximation

• Assumptions: $h(X|B) > -\infty$ and $H(X_{\delta}|B) < \infty$ for an arbitrary δ .

II. Differential Conditional Entropies: Discrete Approximation

Approximaton Theorem:

$$h(X|B) = \lim_{\delta \to 0} \left(H(X_{\delta}|B) + \log \delta \right)$$

Operational Approach

$$2^{h}(X|B) = \lim_{\delta \to 0} \frac{2^{H}(X_{\delta}|B)}{\delta}$$

- Practical (computations)
- Intuition: It converges for δ small enough such that function looks constant

Entropy in V =
$$-\frac{V}{\delta} * (\delta f_k) \log \delta f_k = -V f_k \log f_k - V f_k \log \delta$$

III. Uncertainty Relation in Presence of Quantum Memory P-Q Measurements with Finite Precision

III. Uncertainty Relation in Presence of Quantum Memory The Complementarity Constant

FF, CONTINUOUS VARIABLE ENTROPIC UNCERTAINTY RELATIONS IN THE PRESENCE OF QUANTUM MEMORY

III. Uncertainty Relation in Presence of Quantum Memory P-Q Measurements with Infinite Precision

Discrete Approximation Theorem:

$$H(Q_{\delta}|B) + \log\delta + H(P_{\delta}|C) + \log\delta \ge \log\frac{c(\delta)}{\delta^{2}}$$
$$\delta \to 0, \quad h(X|B) = \lim_{\delta \to 0} \left(H(X_{\delta}|B) + \log\delta \right)$$

Uncertainty Relation (continuous case):

 $h(Q|B) + h(P|C) \ge \log 2\pi\hbar$

Is it sharp (exists a state for which equality holds)?

Not sharp without quantum memory: (Beckner, Ann. of Math., 102:159, 1975)

 $h(Q) + h(P) \ge \log e\pi\hbar$

III. Uncertainty Relation in Presence of Quantum Memory Sharpness of the Uncertainty Relation

Sharp with quantum memory:

EPR-state on A and B for Infinite squeezing !

(EPR-state = pure two-mode squeezed Gaussian state with maximally correlated quadratures)

FF, CONTINUOUS VARIABLE ENTROPIC UNCERTAINTY RELATIONS IN THE PRESENCE OF QUANTUM MEMORY

Conclusion and Outlook

Summary

- Introduced general differential conditional entropy measures
- derived uncertainty relations for coarse-grained and continuous outcomes.
- Same uncertainty relations for min- and max-entropies (tight for finite and infinite precision measurements)
- tight in the continuous case

Outlook:

- Possible applications in QKD: no discretization needed (extremality of Gaussian attacks)
- Approximation of discrete entropies: $H(X_{\delta}|B) \ge h(X|B) \log\delta$

THANK YOU FOR YOUR ATTENTION

MARIO BERTA, VOLKHER SCHOLZ, MATTHIAS CHRISTANDL ETH ZURICH

MARCO TOMAMICHEL CQT SINGAPORE