Security of quantum key distribution

Christopher Portmann* Renato Renner[†] Inst

Institute for Theoretical Physics

Elle Zurich

Basic idea of cryptographic security

- \blacktriangleright View a protocol as constructing some resource $\mathbb S$ from a resource $\mathcal R.$
 - QKD: (authentic channel, quantum channel) \rightarrow secret key.
 - OTP: (authentic channel, secret key) \rightarrow secure channel.
- ε -security: the real and ideal systems are ε -(in)distinguishable.
- Real system: protocol and resources used.
- Ideal system: (ideal) resource constructed and simulator.
- Simulator:
- Creates the real (dishonest) interface given access to the ideal interface.
- \blacktriangleright \implies the real world does not allow a stronger attack than the ideal world.

Quantum key distribution (QKD)

Distinguishing metric

- \blacktriangleright View systems ${\mathcal R}$ and ${\mathbb S}$ as interactive black boxes.
- ► A distinguisher Γ can interact arbitrarily with the systems, and outputs a bit. Its advantage is

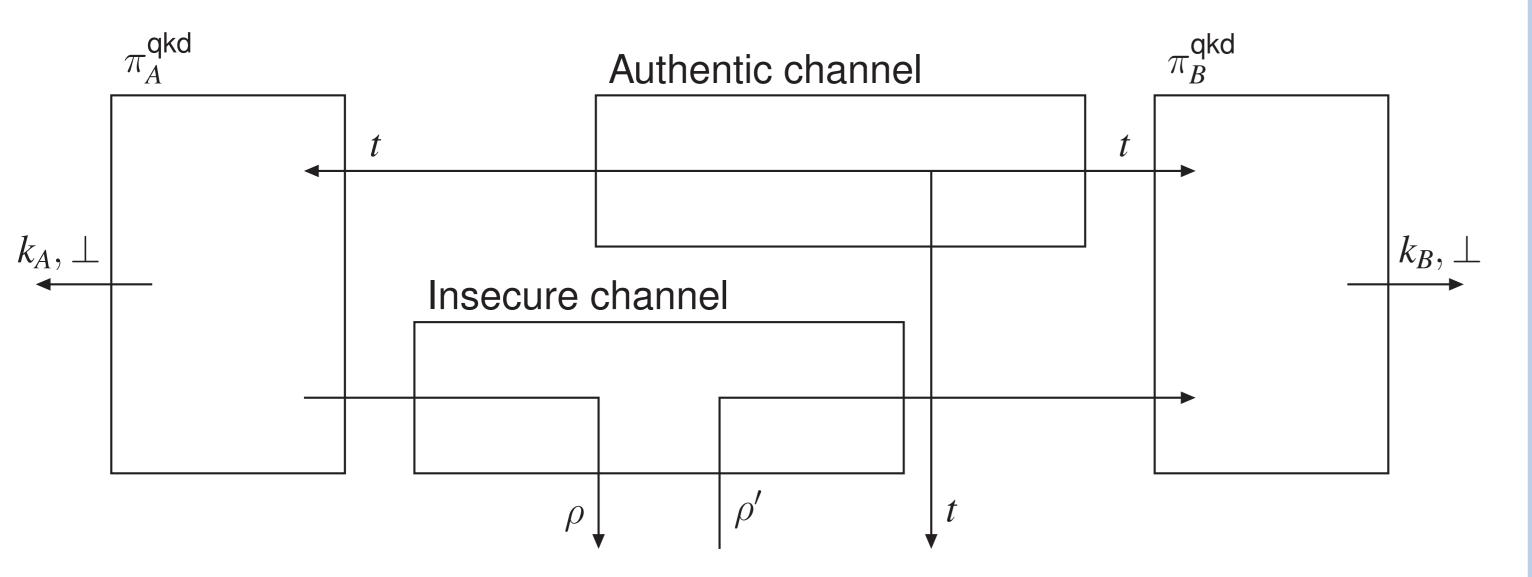
 $d(\mathcal{R}, \mathcal{S}) := \max_{\Gamma} \left\{ \Pr[\Gamma(\mathcal{R}) = 1] - \Pr[\Gamma(\mathcal{S}) = 1] \right\}.$

- ▶ This metric is contractive: $d(\Re T, \Im T) \leq d(\Re, \Im)$.
- ▶ It respects the triangle inequality: $d(\mathcal{R}, S) \le d(\mathcal{R}, T) + d(T, S)$.

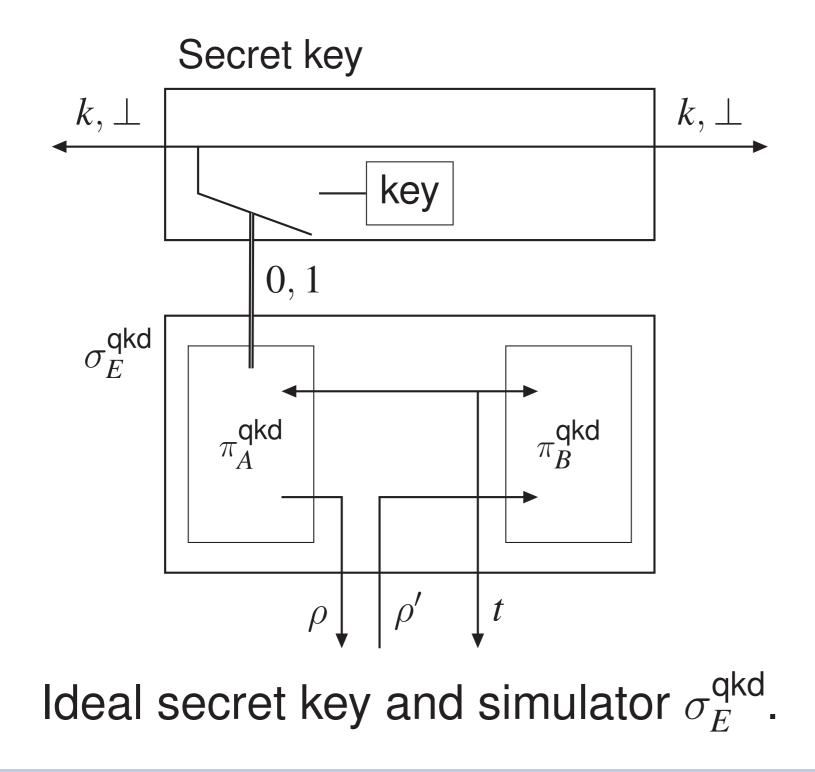
Derivation of the trace distance security criterion

► A QKD protocol is *ε*_{cor}-correct if

A QKD protocol is ε -secure if the two systems below are ε -close in the distinguishing metric.



QKD protocol π^{qkd} , classical authentic channel and quantum insecure channel.



 $\Pr[K_A \neq K_B] \leq \varepsilon_{cor},$

where K_A and K_B are Alice and Bob's final keys. • A QKD protocol is ε_{sec} -secure if

 $(1 - p_{\text{abort}})d(\rho_{AE}, \tau_A \otimes \rho_E) \leq \varepsilon_{\text{sec}},$

where $d(\cdot, \cdot)$ is the trace distance, τ_A the fully mixed state and p_{abort} the probability of aborting.

Theorem: If a QKD protocol is ε_{cor} -correct and ε_{sec} -secure, it is $(\varepsilon_{cor} + \varepsilon_{sec})$ -secure.

Proof sketch: Let ρ_{ABE} and $\tilde{\rho}_{ABE}$ be the states held by the distinguisher after interacting with the real and ideal systems, respectively. Define σ_{ABE} to be the state obtained from ρ_{ABE} by replacing the *B* system with a copy of the key in *A*. Then

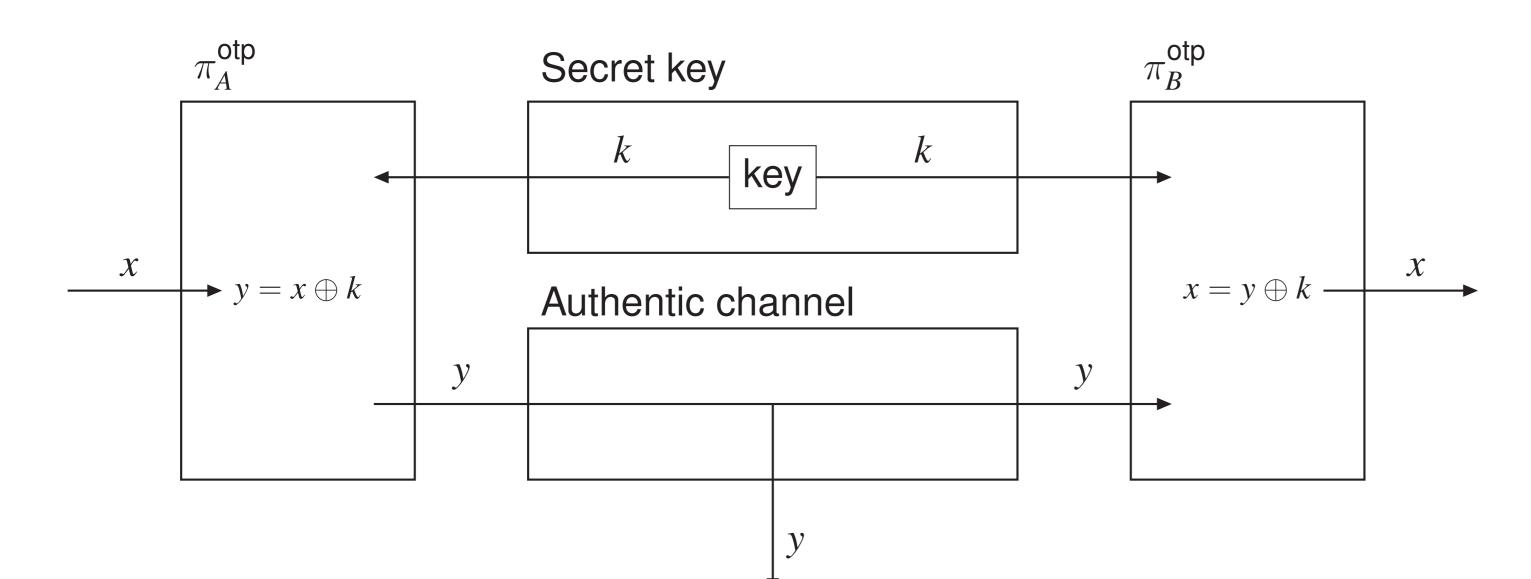
 $d(\rho_{ABE}, \tilde{\rho}_{ABE}) \leq d(\rho_{ABE}, \sigma_{ABE}) + d(\sigma_{ABE}, \tilde{\rho}_{ABE}) \\ \leq \Pr[K_A \neq K_B] + (1 - p_{\text{abort}})d(\rho_{AE}, \tau_A \otimes \rho_E).$

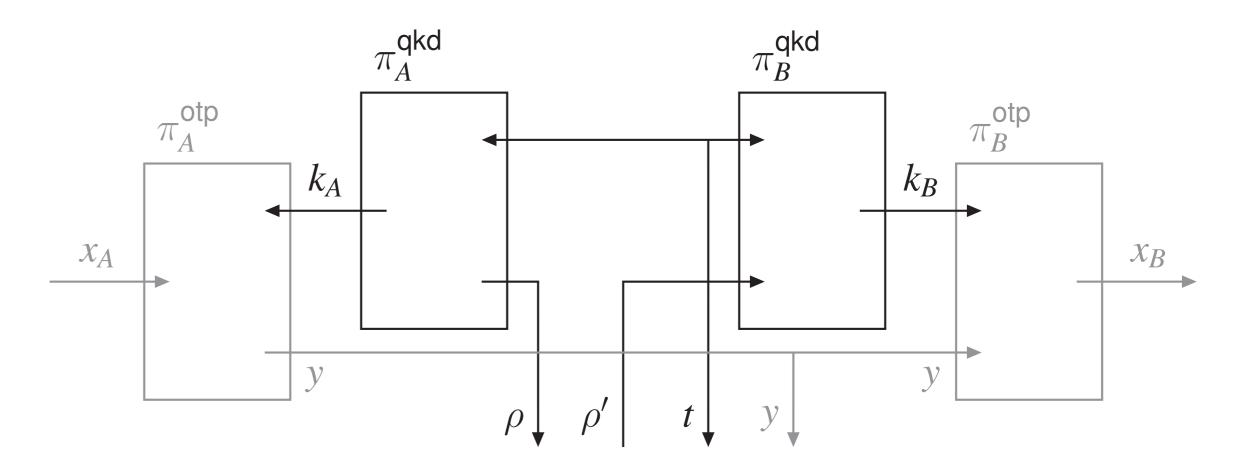
Protocol composition

From the triangle inequality and contractivity of the distinguishing advantage, the first and last systems below are ε -close.

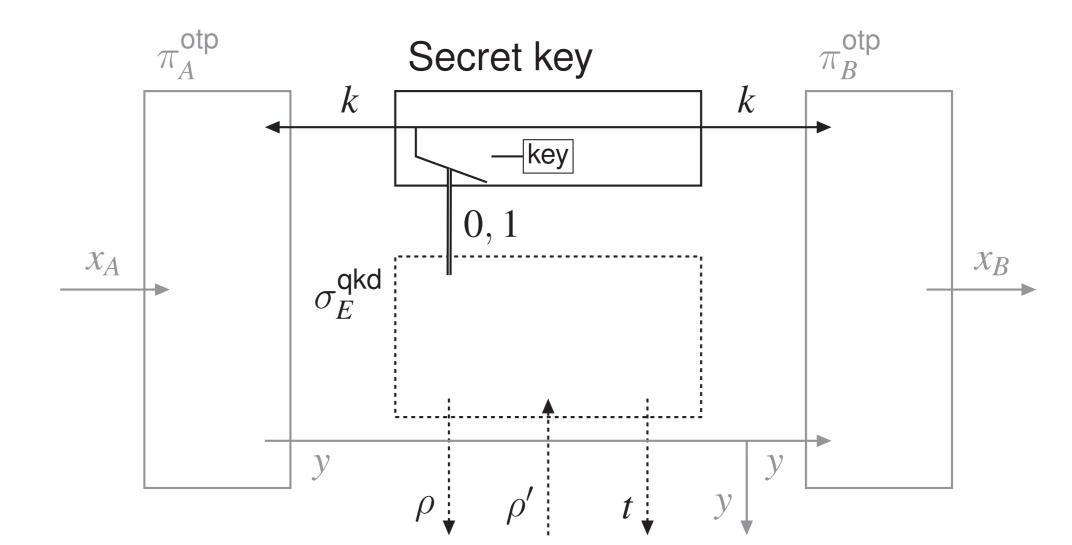
One-time pad (OTP)

The OTP is perfectly (0-)secure, since the two systems below are indistinguishable.

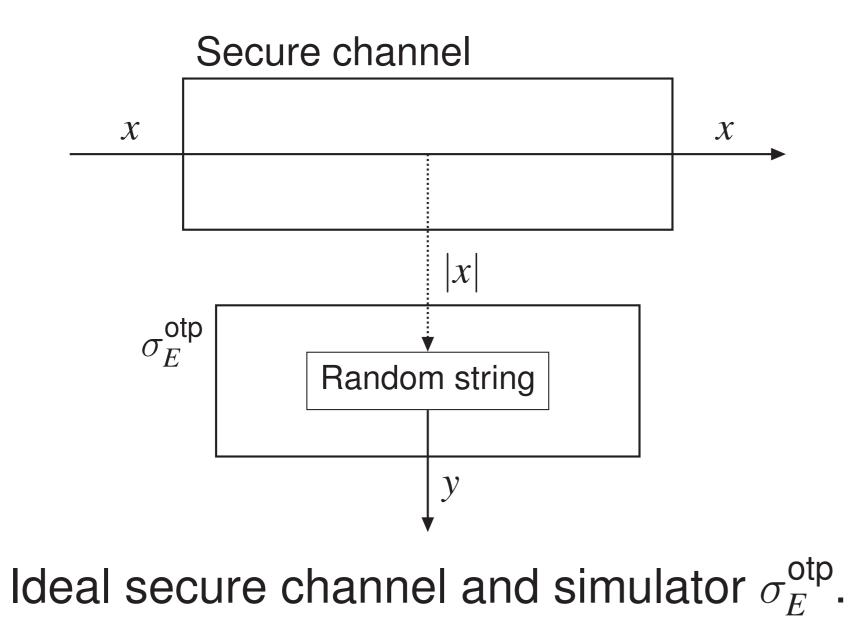




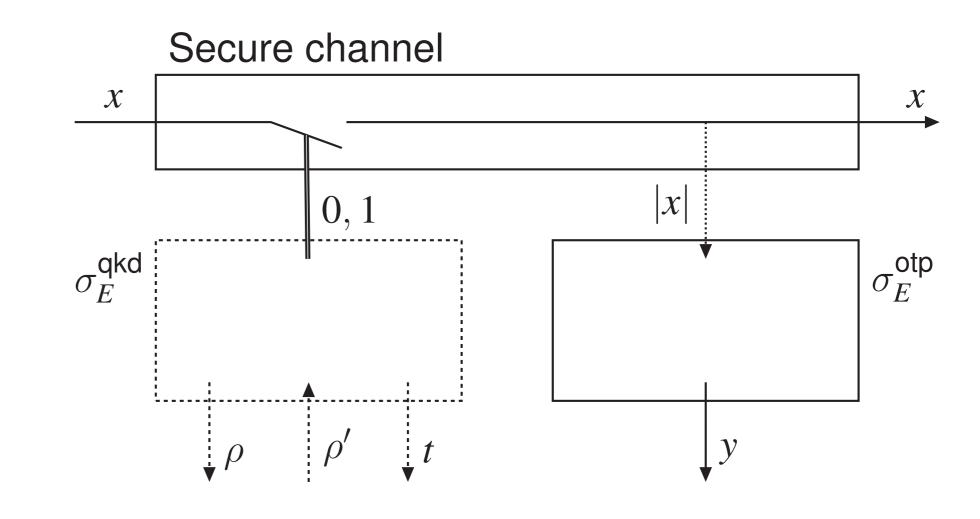
OTP protocol π^{otp} , QKD protocol π^{qkd} , and (implicit) communication channels.



OTP protocol π^{otp} , ideal secret key and authentic channel.



Ideal secret key, OTP protocol π^{otp} and QKD simulator σ_E^{qkd} .



Ideal secure channel and composition of QKD and OTP simulators $\sigma_E^{\text{qkd}} \sigma_E^{\text{otp}}$.

QCRYPT, August 2013

*chportma@phys.ethz.ch [†]renner@phys.ethz.ch