Searching for Optimal Generalized Winnow Protocol

DONNY KOK-ANN TEO (DSO NATIONAL LABORATORIES)

KHOONGMING KHOO (DSO NATIONAL LABORATORIES)

Information Reconciliation

- In Quantum Key Distribution, there may be errors in the secret shared by Alice and Bob due to:
 - o Quantum noise
 - Eavesdropping by the adversary Eve
- Thus need to do information reconciliation to correct shared secret
- A well known reconciliation protocol is the Winnow protocol

Winnow IR Protocol

- 1. Shared secret is divided into 7-bit segments
- 2. A single parity bit from each segment is sent for error detection
- 3. If parity does not match, 3-bit syndrome of Hamming[7,4,3] code is sent for error correction
- 4. Shared secret is permuted and steps 2 to 3 is repeated over several passes

Generalized Winnow IR Protocol

• We generalize the Winnow Protocol as follows:

- We replace the Hamming[7,4,3] code with [n,k,d] error correction code.
- We divide the secret string into n-bit segments.
- For each n-bit segment, we replace single-bit parity check with different CRC codes to detect errors before doing error correction.

Generalized Winnow IR Protocol

- We replace the single parity check CRC(1+x) with other error detection codes:
 CRC(1+x), CRC(1+x+x²), CRC(1+x²+x³+x⁴)
- We replace Hamming[7,4,3] with other error correction codes:
 - Hamming[7,4,3], Hamming[15,11,3], Hamming[31,26,3],
 - Golay[23,12,7]
 - BCH[15,5,7], BCH[15,7,5], BCH[31,11,11], BCH[31,16,7]
- We simulate Generalized Winnow for all 3×8=24 combinations of above detection/correction codes.

Simulation Set-Up

- We correct secret strings of length 8192 bits.
- We repeat the IR experiments 1000 times for each BER between 3% to 9%.
- We look for detection/correction codes that can correct all 8192 bits for ≥ 999 out of 1000 experiments.
- For each BER, we look for optimal codes that
 - Leak the least parity bits
 - Use the least pass

Generalized Winnow Leaking Least Bits

QBER (%)	Best combination optimizing least leakage		Leakage (%) [Least]	Number of Passes
	Linear Code	CRC type		
3	Hamming[31,26,3]	1+x	37	6
4	Hamming[31,26,3]	1+x	48	7
5	Hamming[15,11,3]	1+x	55	5
6	Hamming[15,11,3]	1+x	67	6
7	Hamming[15,11,3]	1+x	74	6
8	Hamming[7,4,3]	1+x	83	4
9	Hamming[15,11,3]	1+x	95	7

Generalized Winnow Using Least Passes

QBER (%)	Best combination optimizing least passes		Leakage (%)	Number of Passes [Least]
	Linear Code	CRC type		
3	Hamming[7,4,3]	1+x	52	3
4	BCH[31,16,7]	1+x ² +x ³ +x ⁴	83	3
5	Golay[23,12,7]	1+x ² +x ³ +x ⁴	94	3
6	Hamming[7,4,3]	1+x	75	4
7	Hamming[7,4,3]	1+x	79	4
8	Hamming[7,4,3]	1+x	83	4
9	Hamming[15,11,3]	1+x	95	7

Conclusion

- Hamming (15,11,3) with CRC 1+x is the combination to give the least bit leakage for majority (4/7) of the qBERs.
- Hamming (7,4,3) with CRC 1+x is the combination to give the least number of passes for majority (4/7) of the qBERs.
- Since the number of passes is always low(<8), Hamming (15,11,3) with CRC 1+x has the best tradeoff (low leakage, small number of passes) amongst the combinations under test.