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Quantum key distribution (QKD) was proposed nearly 30 years ago by Bennett and Brassard
[1] as a way to generate and distribute cryptographic keys whose security is guaranteed by the
laws of physics, and in particular inherent limitations of quantum physics, rather than assumed
limitations of a potential adversary’s computational power. Since that time, especially in the
last 15 years or so, generic security proofs increasingly able to handle the realities of practical
QKD implementations have been proposed.

The majority of recent generic security proofs have considered the entanglement-based variants
of QKD protocols. Most experimental and commercially available QKD implementations, by
contrast, are of the prepare-and-measure variety, and progress toward proving the uncondi-
tional security of prepare-and-measure QKD schemes has lagged somewhat behind the study
of entanglement-based QKD. While certain prepare-and-measure protocols can equivalently be
recast in the form of an entanglement-based scheme [2], this is normally limited to the somewhat
idealised and artificial scenario where Alice’s source states satisfy a condition of basis indepen-
dence [3] (i.e. the average of the emitted source states is the same in the different bases used).
Consequently, most results pertaining to entanglement-based QKD in practice do not carry over
to realistic prepare-and-measure schemes, as the latter may suffer from arbitrary source flaws
which deviate from the basis-independence criterion.

In our work, we provide a simple and intuitive information-theoretic security proof of the
prepare-and-measure BB84 protocol which is able to handle the problem of arbitrary source
and detector misalignments. Specifically, we derive an asymptotic secret keyrate, secure against
collective attacks, for a BB84 implementation in which Alice’s source is allowed to emit four
given but arbitrary pure states and Bob’s detector is left largely uncharacterised. A notable
feature of our approach is its relatively direct treatment of the prepare-and-measure scenario,
in that we never recast the BB84 protocol we study into an equivalent entanglement-based form
and our security result is not explicitly derived based on the properties of entangled states.
Instead, security is derived based on an appropriately characterised bound on an eavesdropper
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(Eve)’s power to clone the source states emitted by Alice. Our approach can be seen as an evo-
lution of Fuchs et al.’s original security proof of the BB84 protocol against individual attacks
[4]. This idea of studying the prepare-and-measure BB84 variant directly was followed in some
early security proofs against collective or general attacks [5, 6], but appears to have been largely
abandoned since Shor and Preskill’s analysis based on entanglement distillation [7].

The keyrate we derive is similar to a result previously derived by Marøy et al. in [8], itself an
improvement over the bound predicted by the uncertainty relation [9, 10] in the special case of
basis independence where a comparison may be made. However Marøy et al.’s result is limited
to the asymptotic scenario (and is thus not a full unconditional security proof), and from a
modern perspective the approach taken suffers certain drawbacks that may make generalisation
difficult. Specifically, their security analysis is an evolution of a framework proposed by Koashi
[11], which is unfortunately quite complicated and relies on a privacy amplification scheme
defined by Koashi as an integral part of the security analysis. This is in contrast to recent
information-theoretic security proofs of entanglement-based QKD, where the details of the post-
processing step are decoupled from the rest of the security analysis. Given this state of affairs,
a modern, information-theoretic foundation for the security of prepare-and-measure protocols
is greatly desirable.

An outline of the scenario we consider and sketch of the security analysis now follows. We
imagine Alice possesses a box which, depending on a choice of bit and “basis”, emits one of
four different quantum states which is then sent to Bob. We call the two “z-basis” states |α〉
and |α′〉 and the two “x-basis” states |β〉 and |β′〉, and we denote the corresponding density
operators by ρ = |α〉〈α|, ρ′ = |α′〉〈α′|, σ = |β〉〈β|, and σ′ = |β′〉〈β′|. As a characterisation of
the source states, we introduce a “basis overlap angle” θ defined such that√

1 + |sin(θ)| = 1
2

∣∣〈α|β〉+ 〈α′|β〉+ 〈α|β′〉 − 〈α′|β′〉
∣∣ (1)

wherever the RHS is greater than 1. Following Eve’s unitary attack, these states are contained
in some Hilbert space HA ⊂ HB⊗HE, where HB and HE respectively denote the Hilbert spaces
accessible to Bob and Eve. Upon reception of the states emitted by Alice, Bob performs one of
two binary-outcome measurements in order to compute his version of the raw key. Alice and
Bob then sacrifice a subset of their results in order to estimate the z- and x-basis bit error rates
δz and δx, and if these are not too high, extract a secret key by error correction and privacy
amplification. We consider the common variant of BB84 in which only the z-basis results are
used to generate the final key.

In the context of our approach, the x-basis bit-error rate serves to bound the distinguishability
between the parts of the x-basis source states accessible to Bob, measured in terms of the trace
distance. Specifically, via the Helstrom bound, we have

D(σB, σ
′
B) ≥ |1− 2δx| , (2)

where D(ρ, σ) = 1
2‖ρ−σ‖1, ‖·‖1 denotes the trace norm, and subscripts indicate partial tracing

in the usual way (e.g. σB = TrE[σ]).

To bound the keyrate, we apply the Devetak-Winter bound [12], which provides a lower bound
on the asymptotic keyrate that can be securely extracted by one-way post-processing against
collective attacks. The result is a bound on the keyrate given in terms of the fidelity between
the parts of the z-basis states accessible to Eve:

r ≥ 1− h
(

1
2 + 1

2F (ρE, ρ
′
E)
)
− h(δz) , (3)
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where F (ρ, σ) = ‖√ρ
√
σ‖1 and h(x) = −x log(x)− (1−x) log(1−x) denotes the binary entropy

function. The security analysis is then completed by a bound on F (ρE, ρ
′
E) given D(σB, σ

′
B).

Any such bound can be considered a fundamental limit on an eavesdropper’s ability to clone
states allowed by quantum physics, and in general will depend on a characterisation of the
source states. Given the basis overlap angle θ introduced in (1), we show that

F (ρE, ρ
′
E) ≥ fθ

(
D(σB, σ

′
B)
)
, (4)

with the function fθ defined by fθ(v) = max
(
|sin(θ)|v − |cos(θ)|

√
1− v2, 0

)
. A keyrate bound

is then obtained simply by substituting (2) and (4) into (3). The result is

r ≥ 1− h
[

1
2 + 1

2fθ
(
|1− 2δx|

)]
− h(δz) . (5)

The derivations of Eqs. (3) and (4) are straightforward and given in [13], where we also give
an improved result in the special case of a qubit source. If we additionally assume Bob’s
measurements are two-dimensional, the results is further improved to the point that, in the
absence of detected errors, we certify an asymptotic keyrate of 1.
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