Fundamental Finite Key Limits for Information Reconciliation in Quantum Key Distribution

arXiv:1401.5194

Marco Tomamichel ${ }^{1}$ Jesús Martínez-Mateo ${ }^{2}$ Christoph Pacher ${ }^{3}$ David Elkouss ${ }^{4}$

${ }^{1}$ Centre for Quantum Technologies, National University of Singapore
School of Physics, The University of Sydney
${ }^{2}$ Universidad Politécnica de Madrid
${ }^{3}$ Safety \& Security Department, AIT Austrian Institute of Technology
${ }^{4}$ Universidad Complutense de Madrid

Outline

1 Quantum Key Distribution

2 Information Reconciliation

3 Motivation

4 Fundamental Limits for Information Reconciliation - Theoretical Results

■ Simulation Results

5 Conclusions / Open Questions

Outline

1 Quantum Key Distribution

2 Information Reconciliation

3 Motivation

4 Fundamental Limits for Information Reconciliation

- Theoretical Results
- Simulation Results

5 Conclusions / Open Questions

Quantum Key Distribution（QKD）

－Cryptographic primitive for key agreement
－Two honest parties：Alice and Bob；dishonest party（eavesdropper）：Eve．
－Achievement：Alice and Bob create an information－theoretic secure （composable）key．

Quantum Key Distribution (QKD)

- Cryptographic primitive for key agreement
- Two honest parties: Alice and Bob; dishonest party (eavesdropper): Eve.
- Achievement: Alice and Bob create an information-theoretic secure (composable) key.

Information-theoretic security (informally)
The success probability of any (active or passive) attack is upper bounded by a (tiny) constant, regardless of the (quantum) computing resources used by the attacker.

QKD protocol steps

Prerequisites:

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)

QKD protocol steps

Prerequisites:

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)

1 quantum phase (A prepares N quantum systems, transmits, and B measures)

QKD protocol steps

Prerequisites:

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)

1 quantum phase (A prepares N quantum systems, transmits, and B measures)
$\boxed{2}$ parameter estimation (A and B estimate correlation between X and Y)

QKD protocol steps

Prerequisites:

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)

1 quantum phase (A prepares N quantum systems, transmits, and B measures)
2 parameter estimation (A and B estimate correlation between X and Y)
3 sifting (A and B remove uncorrelated systems, produce raw keys of length n),

QKD protocol steps

Prerequisites:

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)

1 quantum phase (A prepares N quantum systems, transmits, and B measures)
2 parameter estimation (A and B estimate correlation between X and Y)
3 sifting (A and B remove uncorrelated systems, produce raw keys of length n),
4 information reconciliation (exchanging messages on the classical channel Bob estimates Alice's raw key),

QKD protocol steps

Prerequisites:

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)

1 quantum phase (A prepares N quantum systems, transmits, and B measures)
2 parameter estimation (A and B estimate correlation between X and Y)
3 sifting (A and B remove uncorrelated systems, produce raw keys of length n),
4 information reconciliation (exchanging messages on the classical channel Bob estimates Alice's raw key),
5 privacy amplification

QKD protocol steps

Prerequisites:

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)

1 quantum phase (A prepares N quantum systems, transmits, and B measures)
2 parameter estimation (A and B estimate correlation between X and Y)
3 sifting (A and B remove uncorrelated systems, produce raw keys of length n),
4 information reconciliation (exchanging messages on the classical channel Bob estimates Alice's raw key),
5 privacy amplification (ensures secrecy).

Outline

1 Quantum Key Distribution

2 Information Reconciliation

3 Motivation

4 Fundamental Limits for Information Reconciliation - Theoretical Results

- Simulation Results

5 Conclusions / Open Questions

One Way Information Reconciliation

- Alice and Bob hold raw keys X^{n}, Y^{n} distributed according to $\left(P_{X Y}\right)^{\times n}$.

One Way Information Reconciliation

- Alice and Bob hold raw keys X^{n}, Y^{n} distributed according to $\left(P_{X Y}\right)^{\times n}$.

- Alice first computes a compressed version $M \in \mathcal{M}$ of her raw key X^{n}, and sends it to Bob (leakage to Eve).

One Way Information Reconciliation

- Alice and Bob hold raw keys X^{n}, Y^{n} distributed according to $\left(P_{X Y}\right)^{\times n}$.

- Alice first computes a compressed version $M \in \mathcal{M}$ of her raw key X^{n}, and sends it to Bob (leakage to Eve).
- Bob uses M together with his own raw key Y^{n} to construct an estimate \tilde{X}^{n} of X^{n}.

One Way Information Reconciliation

- Alice and Bob hold raw keys X^{n}, Y^{n} distributed according to $\left(P_{X Y}\right)^{\times n}$.

- Alice first computes a compressed version $M \in \mathcal{M}$ of her raw key X^{n}, and sends it to Bob (leakage to Eve).
- Bob uses M together with his own raw key Y^{n} to construct an estimate \tilde{X}^{n} of X^{n}.
- One Way IR = Source Coding with Side Information

One Way Information Reconciliation

- Alice and Bob hold raw keys X^{n}, Y^{n} distributed according to $\left(P_{X Y}\right)^{\times n}$.

- Alice first computes a compressed version $M \in \mathcal{M}$ of her raw key X^{n}, and sends it to Bob (leakage to Eve).
- Bob uses M together with his own raw key Y^{n} to construct an estimate \tilde{X}^{n} of X^{n}.
- One Way IR = Source Coding with Side Information
- Asymptotic limit it is sufficient to send $n H(X \mid Y)$ bits

Outline

1 Quantum Key Distribution

2 Information Reconciliation

3 Motivation

4 Fundamental Limits for Information Reconciliation ■ Theoretical Results

- Simulation Results

5 Conclusions / Open Questions

Motivation for finite-length studies in QKD

- The secret key length ℓ of a QKD protocol is reduced by leak ${ }_{1 R}$, the amount of information leaked to an eavesdropper during IR.

Motivation for finite-length studies in QKD

- The secret key length ℓ of a QKD protocol is reduced by leak ${ }_{\not R}$, the amount of information leaked to an eavesdropper during IR.
- Since leak $/_{R}$ is hard to determine, the length of the IR messages $\log |\mathcal{M}|$ is often used as a bound

$$
\text { leak }_{/ R} \leq \log |\mathcal{M}|
$$

Motivation for finite-length studies in QKD

- The secret key length ℓ of a QKD protocol is reduced by leak ${ }_{l_{R}}$, the amount of information leaked to an eavesdropper during IR.
- Since leak $/_{R}$ is hard to determine, the length of the IR messages $\log |\mathcal{M}|$ is often used as a bound

$$
\text { leak }_{/ R} \leq \log |\mathcal{M}|
$$

- Motivated by the asymptotic limit, the amount of information that is required to perform one-way IR is usually written as

$$
\log |\mathcal{M}|=\xi \cdot n H(X \mid Y)_{P}
$$

where $\xi>1$ is the reconciliation (in)efficiency.

Motivation for finite-length studies in QKD

- The secret key length ℓ of a QKD protocol is reduced by leak ${ }_{I R}$, the amount of information leaked to an eavesdropper during IR.
- Since leak $/_{R}$ is hard to determine, the length of the IR messages $\log |\mathcal{M}|$ is often used as a bound

$$
\text { leak }_{/ R} \leq \log |\mathcal{M}|
$$

- Motivated by the asymptotic limit, the amount of information that is required to perform one-way IR is usually written as

$$
\log |\mathcal{M}|=\xi \cdot n H(X \mid Y)_{P}
$$

where $\xi>1$ is the reconciliation (in)efficiency.

- In the literature on QKD it is often assumed that $\xi \in[1.05,1.20]$ for all scenarios.

Motivation for finite-length studies in QKD

- The secret key length ℓ of a QKD protocol is reduced by leak ${ }_{l_{R}}$, the amount of information leaked to an eavesdropper during IR.
- Since leak $/_{R}$ is hard to determine, the length of the IR messages $\log |\mathcal{M}|$ is often used as a bound

$$
\text { leak }_{/ R} \leq \log |\mathcal{M}|
$$

- Motivated by the asymptotic limit, the amount of information that is required to perform one-way IR is usually written as

$$
\log |\mathcal{M}|=\xi \cdot n H(X \mid Y)_{P}
$$

where $\xi>1$ is the reconciliation (in)efficiency.

- In the literature on QKD it is often assumed that $\xi \in[1.05,1.20]$ for all scenarios.
- However, this choice should depend on the distribution $P_{X Y}$, the frame length n, and the frame error rate ε.

Motivation for finite-length studies in QKD

- The secret key length ℓ of a QKD protocol is reduced by leak ${ }_{I R}$, the amount of information leaked to an eavesdropper during IR.
- Since leak $/_{R}$ is hard to determine, the length of the IR messages $\log |\mathcal{M}|$ is often used as a bound

$$
\text { leak }_{/ R} \leq \log |\mathcal{M}|
$$

- Motivated by the asymptotic limit, the amount of information that is required to perform one-way IR is usually written as

$$
\log |\mathcal{M}|=\xi \cdot n H(X \mid Y)_{P}
$$

where $\xi>1$ is the reconciliation (in)efficiency.

- In the literature on QKD it is often assumed that $\xi \in[1.05,1.20]$ for all scenarios.
- However, this choice should depend on the distribution $P_{X Y}$, the frame length n, and the frame error rate ε.
- What are the fundamental / practical limits of $\log |\mathcal{M}|$ as a function of $P_{X Y}, n$, and ε ?

Outline

1 Quantum Key Distribution
2. Information Reconciliation
[3 Motivation
4 Fundamental Limits for Information Reconciliation

- Theoretical Results
- Simulation Results

5. Conclusions / Open Questions

State of the art of $\log |\mathcal{M}|$

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

State of the art of $\log |\mathcal{M}|$

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

This work

State of the art of $\log |\mathcal{M}|$

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

This work
1 For an arbitrary $\left(P_{X Y}\right)^{\times n}$ we provide the asymptotic expansion up to third order for the converse bound

State of the art of $\log |\mathcal{M}|$

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

This work
1 For an arbitrary $\left(P_{X Y}\right)^{\times n}$ we provide the asymptotic expansion up to third order for the converse bound
$\boxed{2}$ For a special case we provide a non-asymptotic converse bound

State of the art of $\log |\mathcal{M}|$

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

This work
1 For an arbitrary $\left(P_{X Y}\right)^{\times n}$ we provide the asymptotic expansion up to third order for the converse bound
$\boxed{2}$ For a special case we provide a non-asymptotic converse bound
3 We compare these bounds to implementations of one-way IR using low-density parity-check codes.

Fundamental Limits For Information Reconciliation

Definition
An IR protocol is ε-correct on $P_{X Y}$ if

$$
\operatorname{Pr}\left[X^{n} \neq \tilde{X}^{n}\right] \leq \varepsilon .
$$

Fundamental Limits For Information Reconciliation

Definition
An IR protocol is ε-correct on $P_{X Y}$ if

$$
\operatorname{Pr}\left[X^{n} \neq \tilde{X}^{n}\right] \leq \varepsilon .
$$

Theorem (Converse bound (Normal approximation))
Let $0<\varepsilon<1$. Then, for large n, any ε-correct IR protocol on $P_{X Y}$ satisfies

$$
\log |\mathcal{M}| \geq n H(X \mid Y)+\sqrt{n V(X \mid Y)} \Phi^{-1}(1-\varepsilon)-\frac{1}{2} \log n-O(1)
$$

Fundamental Limits For Information Reconciliation

Definition
An IR protocol is ε-correct on $P_{X Y}$ if

$$
\operatorname{Pr}\left[X^{n} \neq \tilde{X}^{n}\right] \leq \varepsilon .
$$

Theorem (Converse bound (Normal approximation))
Let $0<\varepsilon<1$. Then, for large n, any ε-correct IR protocol on $P_{X Y}$ satisfies

$$
\log |\mathcal{M}| \geq n H(X \mid Y)+\sqrt{n V(X \mid Y)} \Phi^{-1}(1-\varepsilon)-\frac{1}{2} \log n-O(1)
$$

where $H(X \mid Y):=\operatorname{Exp}\left[\log \frac{P_{Y}}{P_{X Y}}\right]$ is the conditional entropy,
$V(X \mid Y):=\operatorname{Var}\left[\log \frac{P_{Y}}{P_{X Y}}\right]$ is the conditional entropy variance, and Φ is the cumulative standard normal distribution.

Special Case: Quantum Bit Error Rate Q

$P_{X Y}^{Q}$ results from measurements on a channel with (independent) qber Q :

$$
\begin{aligned}
P_{X}^{Q}(0) & =P_{X}^{Q}(1)=P_{Y}^{Q}(0)=P_{Y}^{Q}(1)=1 / 2, \\
P_{X Y}^{Q}(0,0) & =P_{X Y}^{Q}(1,1)=(1-Q) / 2, \\
P_{X Y}^{Q}(0,1) & =P_{X Y}^{Q}(1,0)=Q / 2 .
\end{aligned}
$$

Special Case: Quantum Bit Error Rate Q

$P_{X Y}^{Q}$ results from measurements on a channel with (independent) qber Q :

$$
\begin{aligned}
P_{X}^{Q}(0) & =P_{X}^{Q}(1)=P_{Y}^{Q}(0)=P_{Y}^{Q}(1)=1 / 2, \\
P_{X Y}^{Q}(0,0) & =P_{X Y}^{Q}(1,1)=(1-Q) / 2, \\
P_{X Y}^{Q}(0,1) & =P_{X Y}^{Q}(1,0)=Q / 2 .
\end{aligned}
$$

Definition
An IR protocol is (ε, Q)-correct if it is ε-correct on $P_{X Y}^{Q}$.

Special Case: Quantum Bit Error Rate Q

$P_{X Y}^{Q}$ results from measurements on a channel with (independent) qber Q :

$$
\begin{aligned}
P_{X}^{Q}(0) & =P_{X}^{Q}(1)=P_{Y}^{Q}(0)=P_{Y}^{Q}(1)=1 / 2, \\
P_{X Y}^{Q}(0,0) & =P_{X Y}^{Q}(1,1)=(1-Q) / 2, \\
P_{X Y}^{Q}(0,1) & =P_{X Y}^{Q}(1,0)=Q / 2 .
\end{aligned}
$$

Definition
An IR protocol is (ε, Q)-correct if it is ε-correct on $P_{X Y}^{Q}$.
Theorem (Non-asymptotic converse bound for (ε, Q)-correct prot.)

$$
\begin{aligned}
\log |\mathcal{M}| & \geq n h(Q)+\left(n(1-Q)-F^{-1}(\varepsilon(1+1 / \sqrt{n}) ; n, 1-Q)-1\right) \log \frac{1-Q}{Q} \\
& -\frac{1}{2} \log n-\log \frac{1}{\varepsilon} .
\end{aligned}
$$

where $F^{-1}(\cdot ; n, p)$ is the inverse of the CDF of the binomial distribution.

Special Case: Quantum Bit Error Rate Q

Theorem (Converse bound (Normal approximation))

$$
\log |\mathcal{M}| \geq n H(X \mid Y)+\sqrt{n V(X \mid Y)} \Phi^{-1}(1-\varepsilon)-\frac{1}{2} \log n-O(1)
$$

Special Case: Quantum Bit Error Rate Q

Theorem (Converse bound (Normal approximation))

$$
\log |\mathcal{M}| \geq n H(X \mid Y)+\sqrt{n V(X \mid Y)} \Phi^{-1}(1-\varepsilon)-\frac{1}{2} \log n-O(1) .
$$

Corollary (Converse bound for (ε, Q)-correct protocol)
Let $0<\varepsilon<1$ and let $0<Q<\frac{1}{2}$. Then, for large n, any (ε, Q)-correct IR protocol satisfies

$$
\log |\mathcal{M}| \geq \xi(n, \varepsilon ; Q) \cdot n h(Q)-\frac{1}{2} \log n-O(1), \quad \text { where }
$$

Special Case: Quantum Bit Error Rate Q

Theorem (Converse bound (Normal approximation))

$$
\log |\mathcal{M}| \geq n H(X \mid Y)+\sqrt{n V(X \mid Y)} \Phi^{-1}(1-\varepsilon)-\frac{1}{2} \log n-O(1) .
$$

Corollary (Converse bound for (ε, Q)-correct protocol)
Let $0<\varepsilon<1$ and let $0<Q<\frac{1}{2}$. Then, for large n, any (ε, Q)-correct IR protocol satisfies

$$
\begin{aligned}
& \log |\mathcal{M}| \geq \xi(n, \varepsilon ; Q) \cdot n h(Q)-\frac{1}{2} \log n-O(1), \quad \text { where } \\
& \xi(n, \varepsilon ; Q):=1+\frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon),
\end{aligned}
$$

Special Case: Quantum Bit Error Rate Q

Theorem (Converse bound (Normal approximation))

$$
\log |\mathcal{M}| \geq n H(X \mid Y)+\sqrt{n V(X \mid Y)} \Phi^{-1}(1-\varepsilon)-\frac{1}{2} \log n-O(1) .
$$

Corollary (Converse bound for (ε, Q)-correct protocol)
Let $0<\varepsilon<1$ and let $0<Q<\frac{1}{2}$. Then, for large n, any (ε, Q)-correct IR protocol satisfies

$$
\begin{gathered}
\log |\mathcal{M}| \geq \xi(n, \varepsilon ; Q) \cdot n h(Q)-\frac{1}{2} \log n-O(1), \quad \text { where } \\
\xi(n, \varepsilon ; Q):=1+\frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon), \\
h(x):=-x \log x-(1-x) \log (1-x) \text { and } v(x):=x(1-x) \log ^{2}(x /(1-x)) .
\end{gathered}
$$

Special Case: Quantum Bit Error Rate Q

Theorem (Converse bound (Normal approximation))

$$
\log |\mathcal{M}| \geq n H(X \mid Y)+\sqrt{n V(X \mid Y)} \Phi^{-1}(1-\varepsilon)-\frac{1}{2} \log n-O(1) .
$$

Corollary (Converse bound for (ε, Q)-correct protocol)
Let $0<\varepsilon<1$ and let $0<Q<\frac{1}{2}$. Then, for large n, any (ε, Q)-correct IR protocol satisfies

$$
\begin{gathered}
\log |\mathcal{M}| \geq \xi(n, \varepsilon ; Q) \cdot n h(Q)-\frac{1}{2} \log n-O(1), \quad \text { where } \\
\xi(n, \varepsilon ; Q):=1+\frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon), \\
h(x):=-x \log x-(1-x) \log (1-x) \text { and } v(x):=x(1-x) \log ^{2}(x /(1-x)) .
\end{gathered}
$$

Numerically, this simple bound matches the non-asymptotic bound very well.

Efficiency $\xi(n, \varepsilon ; Q)$

- The efficiency of IR is the value multiplying the asymptotic limit

Efficiency $\xi(n, \varepsilon ; Q)$

- The efficiency of IR is the value multiplying the asymptotic limit
- We obtain a forbidden region by plotting $\xi(n, \varepsilon ; Q)$

Efficiency $\xi(n, \varepsilon ; Q)$

- The efficiency of IR is the value multiplying the asymptotic limit
- We obtain a forbidden region by plotting $\xi(n, \varepsilon ; Q)$

Efficiency $\xi(n, \varepsilon ; Q)$

－The efficiency of IR is the value multiplying the asymptotic limit
－We obtain a forbidden region by plotting $\xi(n, \varepsilon ; Q)$
ξ as a function of the frame error rate ε

[^0]
But what about realistic IR codes?

Theoretical Bound

$$
\frac{\log |\mathcal{M}|}{n h(Q)} \approx \xi(n, \varepsilon ; Q):=1+\frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)
$$

But what about realistic IR codes?

Theoretical Bound

$$
\frac{\log |\mathcal{M}|}{n h(Q)} \approx \xi(n, \varepsilon ; Q):=1+\frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)
$$

But what about realistic IR codes?

Theoretical Bound

$$
\frac{\log |\mathcal{M}|}{n h(Q)} \approx \xi(n, \varepsilon ; Q):=1+\frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \phi^{-1}(1-\varepsilon)
$$

But what about realistic IR codes?

Conjecture for LDPC codes

$$
\frac{\log |\mathcal{M}|}{n h(Q)}=: \hat{\xi}(n, \varepsilon ; Q) \approx \xi_{1}+\xi_{2} \cdot \frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)
$$

But what about realistic IR codes?

Conjecture for LDPC codes

$$
\frac{\log |\mathcal{M}|}{n h(Q)}=: \hat{\xi}(n, \varepsilon ; Q) \approx \xi_{1}+\xi_{2} \cdot \frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)
$$

Simulations of LDPC codes and fits

But what about realistic IR codes?

Conjecture for LDPC codes

$$
\frac{\log |\mathcal{M}|}{n h(Q)}=: \hat{\xi}(n, \varepsilon ; Q) \approx \xi_{1}+\xi_{2} \cdot \frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)
$$

Simulations of LDPC codes and fits

n	$\log \|\mathcal{M}\|$	ξ_{1}	ξ_{2}
10^{3}	$4 \cdot 10^{2}$	1.11	1.39
10^{3}	$3 \cdot 10^{2}$	1.12	1.45
10^{3}	$2 \cdot 10^{2}$	1.13	1.69
10^{4}	$4 \cdot 10^{3}$	1.07	1.41
10^{4}	$3 \cdot 10^{3}$	1.08	1.44
10^{4}	$2 \cdot 10^{3}$	1.11	1.89

But what about realistic IR codes?

n	Q	ξ_{1}	ξ_{2}
10^{3}	0.015	1.16	1.52
10^{3}	0.030	1.16	1.31

n	Q	ξ_{1}	ξ_{2}
10^{4}	0.025	1.14	1.26
10^{4}	0.040	1.07	1.58

Outline

1 Quantum Key Distribution

2 Information Reconciliation

3 Motivation

4 Fundamental Limits for Information Reconciliation ■ Theoretical Results - Simulation Results

5 Conclusions / Open Questions

Conclusions / Open Questions

Conclusions

- Fundamental limits for information reconciliation in the finite key regime
- Commonly used approximation $\log |\mathcal{M}| \approx 1.1 n h(Q)$ is often too optimistic for one-way IR
- Numerical simulations for LDPC codes \rightarrow approximation that can be used for the design of QKD systems

Conclusions / Open Questions

Conclusions

- Fundamental limits for information reconciliation in the finite key regime
- Commonly used approximation $\log |\mathcal{M}| \approx 1.1 n h(Q)$ is often too optimistic for one-way IR
- Numerical simulations for LDPC codes \rightarrow approximation that can be used for the design of QKD systems

Open Questions

- Behaviour for different code families
- Joint consideration of fundamental limits for finite-length reconciliation and privacy amplification

Conclusions / Open Questions

Conclusions

- Fundamental limits for information reconciliation in the finite key regime
- Commonly used approximation $\log |\mathcal{M}| \approx 1.1 n h(Q)$ is often too optimistic for one-way IR
- Numerical simulations for LDPC codes \rightarrow approximation that can be used for the design of QKD systems

Open Questions

- Behaviour for different code families
- Joint consideration of fundamental limits for finite-length reconciliation and privacy amplification

THANK YOU!

[^0]: 4ロ・•号
 っの

