Fundamental Finite Key Limits for Information Reconciliation in Quantum Key Distribution

arXiv:1401.5194

Marco Tomamichel ¹ Jesús Martínez-Mateo ² Christoph Pacher ³ David Elkouss ⁴

¹Centre for Quantum Technologies, National University of Singapore School of Physics, The University of Sydney

²Universidad Politécnica de Madrid

³Safety & Security Department, AIT Austrian Institute of Technology

⁴Universidad Complutense de Madrid

Outline

- Quantum Key Distribution
- Information Reconciliation
- 3 Motivation
- 4 Fundamental Limits for Information Reconciliation
 - Theoretical Results
 - Simulation Results
- **5** Conclusions / Open Questions

Outline

Quantum Key Distribution

2 Information Reconciliation

3 Motivation

- Fundamental Limits for Information Reconciliation
 - Theoretical Results
 - Simulation Results
- 5 Conclusions / Open Questions

Quantum Key Distribution (QKD)

- Cryptographic primitive for key agreement
- Two honest parties: Alice and Bob; dishonest party (eavesdropper): Eve.
- Achievement: Alice and Bob create an information-theoretic secure (composable) key.

Quantum Key Distribution (QKD)

- Cryptographic primitive for key agreement
- Two honest parties: Alice and Bob; dishonest party (eavesdropper): Eve.
- Achievement: Alice and Bob create an information-theoretic secure (composable) key.

Information-theoretic security (informally)

The success probability of any (active or passive) attack is upper bounded by a (tiny) constant, regardless of the (quantum) computing resources used by the attacker.

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)
- quantum phase (A prepares N quantum systems, transmits, and B measures)

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)
- quantum phase (A prepares N quantum systems, transmits, and B measures)
- 2 parameter estimation (A and B estimate correlation between X and Y)

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)
- quantum phase (A prepares N quantum systems, transmits, and B measures)
- 2 parameter estimation (A and B estimate correlation between X and Y)
- sifting (A and B remove uncorrelated systems, produce raw keys of length *n*),

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)
- quantum phase (A prepares N quantum systems, transmits, and B measures)
- 2 parameter estimation (A and B estimate correlation between X and Y)
- sifting (A and B remove uncorrelated systems, produce raw keys of length n),
- Information reconciliation (exchanging messages on the classical channel Bob estimates Alice's raw key),

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)
- quantum phase (A prepares N quantum systems, transmits, and B measures)
- 2 parameter estimation (A and B estimate correlation between X and Y)
- sifting (A and B remove uncorrelated systems, produce raw keys of length n),
- Information reconciliation (exchanging messages on the classical channel Bob estimates Alice's raw key),
- 5 privacy amplification

- Authentic classical channel (Eve can listen)
- Quantum channel (Eve introduces noise while listening)
- quantum phase (A prepares N quantum systems, transmits, and B measures)
- 2 parameter estimation (A and B estimate correlation between X and Y)
- sifting (A and B remove uncorrelated systems, produce raw keys of length n),
- Information reconciliation (exchanging messages on the classical channel Bob estimates Alice's raw key),
- 5 privacy amplification (ensures secrecy).

Outline

Quantum Key Distribution

Information Reconciliation

- 3 Motivation
- 4 Fundamental Limits for Information Reconciliation
 - Theoretical Results
 - Simulation Results
- 5 Conclusions / Open Questions

Alice and Bob hold raw keys Xⁿ, Yⁿ distributed according to (P_{XY})^{×n}.

• Alice and Bob hold raw keys X^n , Y^n distributed according to $(P_{XY})^{\times n}$.

 Alice first computes a compressed version *M* ∈ *M* of her raw key Xⁿ, and sends it to Bob (leakage to Eve).

• Alice and Bob hold raw keys X^n , Y^n distributed according to $(P_{XY})^{\times n}$.

- Alice first computes a compressed version *M* ∈ *M* of her raw key Xⁿ, and sends it to Bob (leakage to Eve).
- Bob uses *M* together with his own raw key Y^n to construct an estimate \tilde{X}^n of X^n .

• Alice and Bob hold raw keys X^n , Y^n distributed according to $(P_{XY})^{\times n}$.

- Alice first computes a compressed version *M* ∈ *M* of her raw key Xⁿ, and sends it to Bob (leakage to Eve).
- Bob uses *M* together with his own raw key Y^n to construct an estimate \tilde{X}^n of X^n .
- One Way IR = Source Coding with Side Information

• Alice and Bob hold raw keys X^n , Y^n distributed according to $(P_{XY})^{\times n}$.

- Alice first computes a compressed version *M* ∈ *M* of her raw key *Xⁿ*, and sends it to Bob (leakage to Eve).
- Bob uses *M* together with his own raw key Y^n to construct an estimate \tilde{X}^n of X^n .
- One Way IR = Source Coding with Side Information
- Asymptotic limit it is sufficient to send nH(X|Y) bits

Outline

Quantum Key Distribution

2 Information Reconciliation

3 Motivation

- Fundamental Limits for Information Reconciliation
 - Theoretical Results
 - Simulation Results

5 Conclusions / Open Questions

The secret key length ℓ of a QKD protocol is reduced by leak_{IR}, the amount of information leaked to an eavesdropper during IR.

- The secret key length l of a QKD protocol is reduced by leak_{IR}, the amount of information leaked to an eavesdropper during IR.
- Since leak_{IR} is hard to determine, the length of the IR messages log |*M*| is often used as a bound

 $\mathsf{leak}_{\mathit{IR}} \leq \mathsf{log} |\mathcal{M}|.$

- The secret key length l of a QKD protocol is reduced by leak_{IR}, the amount of information leaked to an eavesdropper during IR.
- Since leak_{IR} is hard to determine, the length of the IR messages log |M| is often used as a bound

 $\mathsf{leak}_{\mathit{IR}} \leq \mathsf{log} |\mathcal{M}|.$

 Motivated by the asymptotic limit, the amount of information that is required to perform one-way IR is usually written as

 $\log |\mathcal{M}| = \xi \cdot nH(X|Y)_P,$

where $\xi > 1$ is the reconciliation (in)efficiency.

- The secret key length ℓ of a QKD protocol is reduced by leak_{IR}, the amount of information leaked to an eavesdropper during IR.
- Since leak_{IR} is hard to determine, the length of the IR messages log |M| is often used as a bound

 $\mathsf{leak}_{\mathit{IR}} \leq \mathsf{log} |\mathcal{M}|.$

 Motivated by the asymptotic limit, the amount of information that is required to perform one-way IR is usually written as

 $\log |\mathcal{M}| = \xi \cdot nH(X|Y)_{P},$

where $\xi > 1$ is the reconciliation (in)efficiency.

• In the literature on QKD it is often assumed that $\xi \in [1.05, 1.20]$ for all scenarios.

- The secret key length l of a QKD protocol is reduced by leak_{IR}, the amount of information leaked to an eavesdropper during IR.
- Since leak $_{I\!R}$ is hard to determine, the length of the IR messages log $|\mathcal{M}|$ is often used as a bound

 $\mathsf{leak}_{\mathit{IR}} \leq \mathsf{log} |\mathcal{M}|.$

 Motivated by the asymptotic limit, the amount of information that is required to perform one-way IR is usually written as

 $\log |\mathcal{M}| = \xi \cdot nH(X|Y)_{P},$

where $\xi > 1$ is the reconciliation (in)efficiency.

- In the literature on QKD it is often assumed that $\xi \in [1.05, 1.20]$ for all scenarios.
- However, this choice should depend on the distribution P_{XY} , the frame length *n*, and the frame error rate ε .

- The secret key length l of a QKD protocol is reduced by leak_{IR}, the amount of information leaked to an eavesdropper during IR.
- Since leak_{IR} is hard to determine, the length of the IR messages log |M| is often used as a bound

 $\mathsf{leak}_{\mathit{IR}} \leq \mathsf{log} |\mathcal{M}|.$

 Motivated by the asymptotic limit, the amount of information that is required to perform one-way IR is usually written as

 $\log |\mathcal{M}| = \xi \cdot nH(X|Y)_{P},$

where $\xi > 1$ is the reconciliation (in)efficiency.

- In the literature on QKD it is often assumed that $\xi \in [1.05, 1.20]$ for all scenarios.
- However, this choice should depend on the distribution P_{XY} , the frame length *n*, and the frame error rate ε .
- What are the fundamental / practical limits of log $|\mathcal{M}|$ as a function of P_{XY} , *n*, and ε ?

Outline

Quantum Key Distribution

2 Information Reconciliation

3 Motivation

Fundamental Limits for Information Reconciliation

- Theoretical Results
- Simulation Results

5 Conclusions / Open Questions

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

This work

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

This work

For an arbitrary $(P_{XY})^{\times n}$ we provide the asymptotic expansion up to third order for the converse bound

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

This work

- For an arbitrary $(P_{XY})^{\times n}$ we provide the asymptotic expansion up to third order for the converse bound
- 2 For a special case we provide a non-asymptotic converse bound

IR / Source coding with side information

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and Tan and Kosut 2012)

This work

- For an arbitrary $(P_{XY})^{\times n}$ we provide the asymptotic expansion up to third order for the converse bound
- 2 For a special case we provide a non-asymptotic converse bound
- We compare these bounds to implementations of one-way IR using low-density parity-check codes.

Fundamental Limits For Information Reconciliation

Definition

An IR protocol is ε -correct on P_{XY} if

 $\Pr[X^n \neq \tilde{X}^n] \leq \varepsilon.$

Fundamental Limits For Information Reconciliation

Definition

An IR protocol is ε -correct on P_{XY} if

 $\Pr[X^n \neq \tilde{X}^n] \leq \varepsilon.$

Theorem (Converse bound (Normal approximation))

Let $0 < \varepsilon < 1$. Then, for large n, any ε -correct IR protocol on P_{XY} satisfies

$$\log |\mathcal{M}| \geq nH(X|Y) + \sqrt{nV(X|Y)} \Phi^{-1}(1-\varepsilon) - \frac{1}{2} \log n - O(1),$$

Fundamental Limits For Information Reconciliation

Definition

An IR protocol is ε -correct on P_{XY} if

 $\Pr[X^n \neq \tilde{X}^n] \leq \varepsilon.$

Theorem (Converse bound (Normal approximation))

Let $0 < \varepsilon < 1$. Then, for large n, any ε -correct IR protocol on P_{XY} satisfies

$$\log |\mathcal{M}| \geq nH(X|Y) + \sqrt{nV(X|Y)} \Phi^{-1}(1-\varepsilon) - \frac{1}{2} \log n - O(1)$$

where $H(X|Y) := \text{Exp}\left[\log \frac{P_Y}{P_{XY}}\right]$ is the conditional entropy, $V(X|Y) := \text{Var}\left[\log \frac{P_Y}{P_{XY}}\right]$ is the conditional entropy variance, and Φ is the cumulative standard normal distribution.

 P_{XY}^Q results from measurements on a channel with (independent) qber Q:

$$P_X^Q(0) = P_X^Q(1) = P_Y^Q(0) = P_Y^Q(1) = 1/2,$$

$$P_{XY}^Q(0,0) = P_{XY}^Q(1,1) = (1-Q)/2,$$

$$P_{XY}^Q(0,1) = P_{XY}^Q(1,0) = Q/2.$$

 P_{XY}^Q results from measurements on a channel with (independent) qber Q:

$$P_X^Q(0) = P_X^Q(1) = P_Y^Q(0) = P_Y^Q(1) = 1/2,$$

$$P_{XY}^Q(0,0) = P_{XY}^Q(1,1) = (1-Q)/2,$$

$$P_{XY}^Q(0,1) = P_{XY}^Q(1,0) = Q/2.$$

Definition

An IR protocol is (ε, Q) -correct if it is ε -correct on P_{XY}^Q .

 P_{XY}^Q results from measurements on a channel with (independent) qber Q:

$$P_X^Q(0) = P_X^Q(1) = P_Y^Q(0) = P_Y^Q(1) = 1/2$$

$$P_{XY}^Q(0,0) = P_{XY}^Q(1,1) = (1-Q)/2,$$

$$P_{XY}^Q(0,1) = P_{XY}^Q(1,0) = Q/2.$$

Definition

An IR protocol is (ε, Q) -correct if it is ε -correct on P_{XY}^Q .

Theorem (Non-asymptotic converse bound for (ε, Q) -correct prot.)

$$\begin{split} \log |\mathcal{M}| \geq nh(Q) + \left(n(1-Q) - F^{-1}\left(\varepsilon\left(1 + 1/\sqrt{n}\right); n, 1-Q\right) - 1\right) \log \frac{1-Q}{Q} \\ &- \frac{1}{2} \log n - \log \frac{1}{\varepsilon}. \end{split}$$

where $F^{-1}(\cdot; n, p)$ is the inverse of the CDF of the binomial distribution.

Theorem (Converse bound (Normal approximation))

$$\log |\mathcal{M}| \geq nH(X|Y) + \sqrt{nV(X|Y)} \, \Phi^{-1}(1-\varepsilon) - \frac{1}{2} \log n - O(1) \, .$$

Theorem (Converse bound (Normal approximation))

$$\log |\mathcal{M}| \geq nH(X|Y) + \sqrt{nV(X|Y)} \Phi^{-1}(1-\varepsilon) - rac{1}{2}\log n - O(1)$$
 .

Corollary (Converse bound for (ε, Q) -correct protocol)

Let $0 < \varepsilon < 1$ and let $0 < Q < \frac{1}{2}$. Then, for large n, any (ε, Q) -correct IR protocol satisfies

$$\log |\mathcal{M}| \ge \xi(n,\varepsilon;Q) \cdot nh(Q) - \frac{1}{2}\log n - O(1),$$
 where

Theorem (Converse bound (Normal approximation))

$$\log |\mathcal{M}| \geq nH(X|Y) + \sqrt{nV(X|Y)} \Phi^{-1}(1-\varepsilon) - rac{1}{2}\log n - O(1)$$
 .

Corollary (Converse bound for (ε, Q) -correct protocol)

Let $0 < \varepsilon < 1$ and let $0 < Q < \frac{1}{2}$. Then, for large n, any (ε, Q) -correct IR protocol satisfies

$$\begin{split} \log |\mathcal{M}| \geq \xi(n,\varepsilon; \mathbf{Q}) \cdot nh(\mathbf{Q}) - \frac{1}{2}\log n - O(1), \qquad \text{where} \\ \xi(n,\varepsilon; \mathbf{Q}) &:= 1 + \frac{1}{\sqrt{n}} \frac{\sqrt{v(\mathbf{Q})}}{h(\mathbf{Q})} \Phi^{-1}(1-\varepsilon), \end{split}$$

Theorem (Converse bound (Normal approximation))

$$\log |\mathcal{M}| \geq nH(X|Y) + \sqrt{nV(X|Y)} \Phi^{-1}(1-\varepsilon) - rac{1}{2}\log n - O(1)$$
 .

Corollary (Converse bound for (ε, Q) -correct protocol)

Let $0 < \varepsilon < 1$ and let $0 < Q < \frac{1}{2}$. Then, for large n, any (ε, Q) -correct IR protocol satisfies

$$\begin{split} \log |\mathcal{M}| \geq \xi(n,\varepsilon;Q) \cdot nh(Q) &- \frac{1}{2}\log n - O(1), \qquad \text{where} \\ \xi(n,\varepsilon;Q) &:= 1 + \frac{1}{\sqrt{n}} \frac{\sqrt{\nu(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon), \end{split}$$

 $h(x) := -x \log x - (1-x) \log(1-x)$ and $v(x) := x(1-x) \log^2 (x/(1-x))$.

Theorem (Converse bound (Normal approximation))

$$\log |\mathcal{M}| \geq nH(X|Y) + \sqrt{nV(X|Y)} \Phi^{-1}(1-\varepsilon) - rac{1}{2}\log n - O(1)$$
 .

Corollary (Converse bound for (ε, Q) -correct protocol)

Let $0 < \varepsilon < 1$ and let $0 < Q < \frac{1}{2}$. Then, for large n, any (ε, Q) -correct IR protocol satisfies

$$\begin{split} \log |\mathcal{M}| \geq \xi(n,\varepsilon;Q) \cdot nh(Q) &- \frac{1}{2}\log n - O(1), \qquad \text{where} \\ \xi(n,\varepsilon;Q) &:= 1 + \frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon), \end{split}$$

 $h(x) := -x \log x - (1-x) \log(1-x)$ and $v(x) := x(1-x) \log^2 (x/(1-x))$.

Numerically, this simple bound matches the non-asymptotic bound very well.

• The efficiency of IR is the value multiplying the asymptotic limit

- The efficiency of IR is the value multiplying the asymptotic limit
- We obtain a forbidden region by plotting $\xi(n, \varepsilon; Q)$

- The efficiency of IR is the value multiplying the asymptotic limit
- We obtain a forbidden region by plotting $\xi(n, \varepsilon; Q)$

- The efficiency of IR is the value multiplying the asymptotic limit
- We obtain a forbidden region by plotting $\xi(n, \varepsilon; Q)$

ξ as a function of the frame error rate ε

Theoretical Bound

$$\frac{\log |\mathcal{M}|}{nh(Q)} \approx \xi(n,\varepsilon;Q) := 1 + \frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)$$

Theoretical Bound

$$\frac{\log |\mathcal{M}|}{nh(Q)} \approx \xi(n,\varepsilon;Q) := 1 + \frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)$$

Theoretical Bound

$$\frac{\log |\mathcal{M}|}{nh(Q)} \approx \xi(n,\varepsilon;Q) := 1 + \frac{1}{\sqrt{n}} \frac{\sqrt{\nu(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)$$

Conjecture for LDPC codes

$$\frac{\log |\mathcal{M}|}{nh(Q)} =: \hat{\xi}(n,\varepsilon;Q) \approx \frac{\xi_1}{\xi_2} \cdot \frac{1}{\sqrt{n}} \frac{\sqrt{\nu(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)$$

Conjecture for LDPC codes

$$\frac{\log |\mathcal{M}|}{nh(Q)} =: \hat{\xi}(n,\varepsilon;Q) \approx \frac{\xi_1}{\xi_1} + \frac{\xi_2}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)$$

Conjecture for LDPC codes

$$\frac{\log |\mathcal{M}|}{nh(Q)} =: \hat{\xi}(n,\varepsilon;Q) \approx \frac{\xi_1}{\xi_1} + \frac{\xi_2}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}} \frac{\sqrt{v(Q)}}{h(Q)} \Phi^{-1}(1-\varepsilon)$$

n	$\log \mathcal{M} $	ξ1	ξ2
10 ³	$4\cdot 10^2$	1.11	1.39
10 ³	$3\cdot 10^2$	1.12	1.45
10 ³	$2 \cdot 10^2$	1.13	1.69
10 ⁴	4 · 10 ³	1.07	1.41
10 ⁴	$3 \cdot 10^3$	1.08	1.44
10 ⁴	$2 \cdot 10^3$	1.11	1.89

Outline

Quantum Key Distribution

- 2 Information Reconciliation
- 3 Motivation
- Fundamental Limits for Information Reconciliation
 - Theoretical Results
 - Simulation Results

5 Conclusions / Open Questions

Conclusions / Open Questions

Conclusions

- Fundamental limits for information reconciliation in the finite key regime
- Commonly used approximation log $|\mathcal{M}| \approx 1.1 nh(Q)$ is often too optimistic for one-way IR
- Numerical simulations for LDPC codes \rightarrow approximation that can be used for the design of QKD systems

Conclusions / Open Questions

Conclusions

- Fundamental limits for information reconciliation in the finite key regime
- Commonly used approximation log $|\mathcal{M}| \approx 1.1 nh(Q)$ is often too optimistic for one-way IR
- Numerical simulations for LDPC codes \rightarrow approximation that can be used for the design of QKD systems

Open Questions

- Behaviour for different code families
- Joint consideration of fundamental limits for finite-length reconciliation and privacy amplification

Conclusions / Open Questions

Conclusions

- Fundamental limits for information reconciliation in the finite key regime
- Commonly used approximation log $|\mathcal{M}| \approx 1.1 nh(Q)$ is often too optimistic for one-way IR
- $\hfill Numerical simulations for LDPC codes <math display="inline">\to$ approximation that can be used for the design of QKD systems

Open Questions

- Behaviour for different code families
- Joint consideration of fundamental limits for finite-length reconciliation and privacy amplification

THANK YOU!