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= Cryptographic primitive for key agreement

= Two honest parties: Alice and Bob; dishonest party (eavesdropper): Eve.
= Achievement: Alice and Bob create an information-theoretic secure
(composable) key.

Information-theoretic security (informally)

The success probability of any (active or passive) attack is upper bounded by
a (tiny) constant, regardless of the (quantum) computing resources used by
the attacker.
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QKD protocol steps

Prerequisites:
= Authentic classical channel (Eve
can listen)

= Quantum channel (Eve
introduces noise while listening)

quantum phase (A prepares N quantum systems, transmits, and B
measures )

parameter estimation (A and B estimate correlation between X and Y)

B sifting (A and B remove uncorrelated systems, produce raw keys of
length n),

A information reconciliation (exchanging messages on the classical
channel Bob estimates Alice’s raw key),

B privacy amplification
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QKD protocol steps

Prerequisites:

= Authentic classical channel (Eve
can listen)

= Quantum channel (Eve
introduces noise while listening)

quantum phase (A prepares N quantum systems, transmits, and B
measures )

parameter estimation (A and B estimate correlation between X and Y)

sifting (A and B remove uncorrelated systems, produce raw keys of
length n),

information reconciliation (exchanging messages on the classical
channel Bob estimates Alice’s raw key),

privacy amplification (ensures secrecy).
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One Way Information Reconciliation

= Alice and Bob hold raw keys X", Y” distributed according to (Pxy)*"
XTl

YIl
ENC M

DEC [—= X
= Alice first computes a compressed version M € M of her raw key X",
and sends it to Bob (leakage to Eve).




One Way Information Reconciliation

= Alice and Bob hold raw keys X", Y” distributed according to (Pxy)*"
XTl

YIl
ENC X

> Xn
Alice first computes a compressed version M € M of her raw key X",
and sends it to Bob (leakage to Eve).

<

DEC

X" of X".

Bob uses M together with his own raw key Y to construct an estimate



One Way Information Reconciliation

= Alice and Bob hold raw keys X", Y” distributed according to (Pxy)*"
XTl

YIl
ENC X

> Xn
Alice first computes a compressed version M € M of her raw key X",
and sends it to Bob (leakage to Eve).

<

DEC

Bob uses M together with his own raw key Y to construct an estimate
X" of X".

= One Way IR = Source Coding with Side Information



One Way Information Reconciliation

* Alice and Bob hold raw keys X", Y" distributed according to (Pxy)*".

XTl Y'l
M o
ENC DEC —— X»

Alice first computes a compressed version M € M of her raw key X",
and sends it to Bob (leakage to Eve).

Bob uses M together with his own raw key Y to construct an estimate
X" of X".

= One Way IR = Source Coding with Side Information
= Asymptotic limit it is sufficient to send nH(X1Y') bits
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Motivation for finite-length studies in QKD

= The secret key length ¢ of a QKD protocol is reduced by leakg, the
amount of information leaked to an eavesdropper during IR.

Since leakg is hard to determine, the length of the IR messages log | M|
is often used as a bound

leak;r < log|M].

Motivated by the asymptotic limit, the amount of information that is
required to perform one-way IR is usually written as

log M| =& -nH(X|Y)p,

where £ > 1 is the reconciliation (in)efficiency.

In the literature on QKD it is often assumed that £ € [1.05, 1.20] for all
scenarios.

However, this choice should depend on the distribution Pxy, the frame
length n, and the frame error rate ¢.

What are the fundamental / practical limits of log | M| as a function of
Pxy, n, and ?
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State of the art of log | M|
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State of the art of log | M|

IR / Source coding with side information

Xm yn

l l

ENC DEC |[—— Xn

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and
Tan and Kosut 2012)

This work

For an arbitrary (Pxy)*" we provide the asymptotic expansion up to third
order for the converse bound

For a special case we provide a non-asymptotic converse bound

We compare these bounds to implementations of one-way IR using
low-density parity-check codes.
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Fundamental Limits For Information Reconciliation
Definition

An IR protocol is e-correct on Pxy if

PriX" # X" <e

Theorem (Converse bound (Normal approximation))

Let 0 < e <1. Then, for large n, any e-correct IR protocol on Pxy satisfies
log M| > nH(X|Y) 4+ /nV(X[Y)® (1 —¢) — —Iogn—O( ),
where H(X|Y) := Exp [log P% 1

V(X]Y) := Var [log

c

] is the conditional entropy,
umulative standard normal distribution

| is the conditional entropy variance, and & is the
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Special Case: Quantum Bit Error Rate Q

P)?Y results from measurements on a channel with (independent) gber Q
PR(0) = PR(1) = PY(0) = PY(1) = 1/2,
Pv(0,0) = PR, (1,1) = (1 - Q)/2,
P%(0,1) = PR, (1,0) = Q/2.
Definition

An IR protocol is (e, Q)-correct if it is e-correct on P, .

Theorem (Non-asymptotic converse bound for (e, Q)-correct prot.)

0g ) 2 (@) + (n(1 ~ Q) ~ ™! (=(1-+ 1/VA)n.1 - Q) 1) g
- 1Iogn—log 1.
2 €

1-Q
Q
& =

where F~'(-; n, p) is the inverse of the CDF of the binomial distribution.
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Special Case: Quantum Bit Error Rate Q

Theorem (Converse bound (Normal approximation))

log M| > nH(X|Y) + /AVX[Y) &' (1 — ) — %Iogn — o).

Corollary (Converse bound for (e, Q)-correct protocol)

Let0O <e < 1andlet0 < Q < }. Then, for large n, any (e, Q)-correct IR
protocol satisfies

log| M| > &(n,e; Q) - nh(Q) — %Iogn - 0(1), where
&(ne;Q):=1+ v(Q)

h(Q) ¢71 (1 75)5

ik

h(x) =

—xlogx — (1 —x)log(1 — x) and v(x) := x(1 — x) log® (x/(1 — x)).

Numerically, this simple bound matches the non-asymptotic bound very well.
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Efficiency £(n, ¢; Q)

= The efficiency of IR is the value multiplying the asymptotic limit
= We obtain a forbidden region by plotting £(n, &; Q)

¢ as a function of the frame error rate ¢
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But what about realistic IR codes?
Theoretical Bound
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Theoretical Bound
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Conjecture for LDPC codes
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But what about realistic IR codes?
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Conclusions

* Fundamental limits for information reconciliation in the finite key regime
= Commonly used approximation log |M| ~ 1.1nh(Q) is often too
optimistic for one-way IR

* Numerical simulations for LDPC codes — approximation that can be
used for the design of QKD systems

Open Questions
= Behaviour for different code families

= Joint consideration of fundamental limits for finite-length reconciliation
and privacy amplification

THANK YOU!
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