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Quantum Key Distribution (QKD)

Cryptographic primitive for key agreement
Two honest parties: Alice and Bob; dishonest party (eavesdropper): Eve.
Achievement: Alice and Bob create an information-theoretic secure
(composable) key.

Information-theoretic security (informally)
The success probability of any (active or passive) attack is upper bounded by
a (tiny) constant, regardless of the (quantum) computing resources used by
the attacker.
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QKD protocol steps

Bob

Public
Channel

Quantum	
  Channel

Alice

X Y

Prerequisites:
Authentic classical channel (Eve
can listen)
Quantum channel (Eve
introduces noise while listening)

1 quantum phase

(A prepares N quantum systems, transmits, and B
measures )

2 parameter estimation

(A and B estimate correlation between X and Y )

3 sifting

(A and B remove uncorrelated systems, produce raw keys of
length n),

4 information reconciliation

(exchanging messages on the classical
channel Bob estimates Alice’s raw key),

5 privacy amplification

(ensures secrecy).
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One Way Information Reconciliation

Alice and Bob hold raw keys Xn,Y n distributed according to (PXY )×n.

ENC DEC
M

Xn Yn

X̃n

Alice first computes a compressed version M ∈M of her raw key Xn,
and sends it to Bob (leakage to Eve).
Bob uses M together with his own raw key Y n to construct an estimate
X̃n of Xn.
One Way IR = Source Coding with Side Information
Asymptotic limit it is sufficient to send nH(X |Y ) bits
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Motivation for finite-length studies in QKD
The secret key length ` of a QKD protocol is reduced by leakIR, the
amount of information leaked to an eavesdropper during IR.

Since leakIR is hard to determine, the length of the IR messages log |M|
is often used as a bound

leakIR ≤ log |M|.

Motivated by the asymptotic limit, the amount of information that is
required to perform one-way IR is usually written as

log |M| = ξ · nH(X |Y )P,

where ξ > 1 is the reconciliation (in)efficiency.
In the literature on QKD it is often assumed that ξ ∈ [1.05, 1.20] for all
scenarios.
However, this choice should depend on the distribution PXY , the frame
length n, and the frame error rate ε.
What are the fundamental / practical limits of log |M| as a function of
PXY , n, and ε?
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State of the art of log |M|
IR / Source coding with side information

ENC DEC
M

Xn Yn

X̃n

Bounds on the asymptotic expansion up to second order (Hayashi 2008 and
Tan and Kosut 2012)

This work

1 For an arbitrary (PXY )×n we provide the asymptotic expansion up to third
order for the converse bound

2 For a special case we provide a non-asymptotic converse bound
3 We compare these bounds to implementations of one-way IR using

low-density parity-check codes.
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Fundamental Limits For Information Reconciliation

Definition
An IR protocol is ε-correct on PXY if

Pr[Xn 6= X̃n] ≤ ε.

Theorem (Converse bound (Normal approximation))
Let 0 < ε <1. Then, for large n, any ε-correct IR protocol on PXY satisfies

log |M| ≥ nH(X |Y ) +
√

nV(X |Y ) Φ−1(1− ε)− 1
2 log n−O(1) ,

where H(X |Y ) := Exp
[
log PY

PXY

]
is the conditional entropy,

V(X |Y ) := Var
[
log PY

PXY

]
is the conditional entropy variance, and Φ is the

cumulative standard normal distribution.
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Special Case: Quantum Bit Error Rate Q
PQ

XY results from measurements on a channel with (independent) qber Q:

PQ
X (0) = PQ

X (1) = PQ
Y (0) = PQ

Y (1) = 1/2,
PQ

XY (0, 0) = PQ
XY (1, 1) = (1−Q)/2,

PQ
XY (0, 1) = PQ

XY (1, 0) = Q/2.

Definition
An IR protocol is (ε,Q)-correct if it is ε-correct on PQ

XY .

Theorem (Non-asymptotic converse bound for (ε,Q)-correct prot.)

log |M| ≥ nh(Q) +

(
n(1−Q)− F−1

(
ε
(
1 + 1/

√
n
)
; n, 1−Q

)
− 1
)
log 1−Q

Q

− 1
2 log n− log 1

ε
.

where F−1( · ; n, p) is the inverse of the CDF of the binomial distribution.
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Special Case: Quantum Bit Error Rate Q

Theorem (Converse bound (Normal approximation))

log |M| ≥ nH(X |Y ) +
√

nV(X |Y ) Φ−1(1− ε)− 1
2 log n−O(1) .

Corollary (Converse bound for (ε,Q)-correct protocol)

Let 0 < ε < 1 and let 0 < Q < 1
2 . Then, for large n, any (ε,Q)-correct IR

protocol satisfies

log |M| ≥ ξ(n, ε;Q) · nh(Q)− 1
2 log n−O(1), where

ξ(n, ε;Q) := 1 +
1√
n

√
v(Q)

h(Q)
Φ−1(1−ε),

h(x) := −x log x − (1− x) log(1− x) and v(x) := x(1− x) log2 (x/(1− x)
)
.

Numerically, this simple bound matches the non-asymptotic bound very well.
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Efficiency ξ(n, ε;Q)

The efficiency of IR is the value multiplying the asymptotic limit

We obtain a forbidden region by plotting ξ(n, ε;Q)

ξ as a function of the blocksize n
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Efficiency ξ(n, ε;Q)

The efficiency of IR is the value multiplying the asymptotic limit
We obtain a forbidden region by plotting ξ(n, ε;Q)

ξ as a function of the frame error rate ε
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But what about realistic IR codes?

Theoretical Bound

log |M|
nh(Q)

≈ ξ(n, ε;Q) := 1 +
1√
n

√
v(Q)

h(Q)
Φ−1(1−ε)
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But what about realistic IR codes?

Conjecture for LDPC codes
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104 2 · 103 1.11 1.89

18



AUSTRIAN INSTITUTE 
OF TECHNOLOGY 

But what about realistic IR codes?

Conjecture for LDPC codes

log |M|
nh(Q)

=: ξ̂(n, ε;Q) ≈ ξ1 + ξ2 ·
1√
n

√
v(Q)

h(Q)
Φ−1(1− ε)

Simulations of LDPC codes and fits

0 0.02 0.04 0.06 0.08 0.1

Q

10­6

10­5

10­4

10­3

10­2

10­1

1

ε

Sum­product algorithm
Maximum 200 decoding iterations

R=0.6, n=103

R=0.6, n=104

R=0.8, n=103

R=0.8, n=104

b
o
u
n
d

fi
t

n log |M| ξ1 ξ2

103 4 · 102 1.11 1.39
103 3 · 102 1.12 1.45
103 2 · 102 1.13 1.69
104 4 · 103 1.07 1.41
104 3 · 103 1.08 1.44
104 2 · 103 1.11 1.89

18



AUSTRIAN INSTITUTE 
OF TECHNOLOGY 

But what about realistic IR codes?

Conjecture for LDPC codes

log |M|
nh(Q)

=: ξ̂(n, ε;Q) ≈ ξ1 + ξ2 ·
1√
n

√
v(Q)

h(Q)
Φ−1(1− ε)

Simulations of LDPC codes and fits

0 0.02 0.04 0.06 0.08 0.1

Q

10­6

10­5

10­4

10­3

10­2

10­1

1

ε

Sum­product algorithm
Maximum 200 decoding iterations

R=0.6, n=103

R=0.6, n=104

R=0.8, n=103

R=0.8, n=104

b
o
u
n
d

fi
t

n log |M| ξ1 ξ2

103 4 · 102 1.11 1.39
103 3 · 102 1.12 1.45
103 2 · 102 1.13 1.69
104 4 · 103 1.07 1.41
104 3 · 103 1.08 1.44
104 2 · 103 1.11 1.89

18



AUSTRIAN INSTITUTE 
OF TECHNOLOGY 

But what about realistic IR codes?
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Conclusions / Open Questions

Conclusions
Fundamental limits for information reconciliation in the finite key regime
Commonly used approximation log |M| ≈ 1.1nh(Q) is often too
optimistic for one-way IR
Numerical simulations for LDPC codes→ approximation that can be
used for the design of QKD systems

Open Questions
Behaviour for different code families
Joint consideration of fundamental limits for finite-length reconciliation
and privacy amplification

THANK YOU!
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