Device-independent uncertainty relations for binary observables

Jed Kaniewski, Marco Tomamichel, Stephanie Wehner

Centre for Quantum Technologies, National University of Singapore, Singapore

Phys. Rev. A 90, 012332
(arXiv:1402.5722)
QCrypt'14, Paris, France
3 September 2014

National University of Singapore

Outline

Outline

- (Mini-)Framework for uncertainty relations
- Binary observables and anti-commutation
- Partial anti-commutation, ellipsoid condition and entropic uncertainty (technical)
- Summary: simple procedure for device-independent uncertainty
- Two open questions

The Zoo of Uncertainty Relations

The Zoo of Uncertainty Relations

$\sigma_{X} \sigma_{P} \geq \frac{\hbar}{2}$
(Heisenberg, 1927)

The Zoo of Uncertainty Relations

$$
\sigma_{X} \sigma_{P} \geq \frac{\hbar}{2}
$$

(Heisenberg, 1927)

$$
\sigma_{A} \sigma_{B} \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

(Robertson, 1929)

The Zoo of Uncertainty Relations

$$
\sigma_{X} \sigma_{P} \geq \frac{\hbar}{2}
$$

(Heisenberg, 1927)

$$
\sigma_{A} \sigma_{B} \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

(Robertson, 1929)
$H(X)+H(Z) \geq-\frac{1}{2} \log c$
(Maassen-Uffink, 1988)

and many more...

What is an uncertainty relation?

What is an uncertainty relation?

What is an uncertainty relation?

What is an uncertainty relation?

What is an uncertainty relation?

What is an uncertainty relation?

What is an uncertainty relation?

What is an uncertainty relation?

How to make it rigorous?

We need 3 components:

How to make it rigorous?

We need 3 components:
[1] A measure of incompatibility

$$
\operatorname{Inc}=f\left(\rho, M_{1}, M_{2}, \ldots\right)
$$

How to make it rigorous?

We need 3 components:
[1] A measure of incompatibility Inc $=f\left(\rho, M_{1}, M_{2}, \ldots\right)$
[2] A measure of uncertainty Unc $=g\left(\rho_{X_{1}}, \rho_{X_{2}}, \ldots\right)$

How to make it rigorous?

We need 3 components:
[1] A measure of incompatibility [2] A measure of uncertainty

$$
\operatorname{Inc}=f\left(\rho, M_{1}, M_{2}, \ldots\right) \quad \text { Unc }=g\left(\rho_{X_{1}}, \rho_{X_{2}}, \ldots\right)
$$

[3] A non-trivial relation between [1] and [2]
Unc $\geq h(\operatorname{lnc})$

How to make it rigorous?

Warning! For every pair of measures there exists a well-defined trade-off, which can be found by solving the following minimisation problem for all admissible t :

minimise Unc

$$
\begin{gathered}
\text { over } \rho, M_{1}, M_{2}, \ldots, M_{n} \\
\text { which satisfy } \operatorname{Inc}=t
\end{gathered}
$$

Are all of them interesting?

How to make it rigorous?

Warning! For every pair of measures there exists a well-defined trade-off, which can be found by solving the following minimisation problem for all admissible t :

minimise Unc

$$
\begin{gathered}
\text { over } \rho, M_{1}, M_{2}, \ldots, M_{n} \\
\text { which satisfy } \operatorname{Inc}=t
\end{gathered}
$$

Are all of them interesting?
No!

What do we want? What makes us happy?

What do we want? What makes us happy?

What do we want? What makes us happy?

What do we want? What makes us happy?

The main object of study

A set of multiple binary measurements

The main object of study

(more than 2)

A set of multiple binary measurements

The main object of study

(more than 2) (with two outcomes)

A set of multiple binary measurements

The main object of study

A set of multiple binary measurements

- The usual dimension reduction based on Jordan's lemma does not work for more than 2 measurements
- We want uncertainty based on measures that can be certified device-independently (e.g. no assumption on the dimension)
- This has been studied for a very special family of observables which are pairwise "maximally incompatible" [Wehner, Winter'08]. Can we provide a generalised statement that applies to an arbitrary set of binary observables?

Binary observables 101

A binary (projective) observable A :

$$
A=A^{\dagger} \quad \text { and } \quad A^{2}=\mathbb{1}
$$

where $\mathbb{1}$ is the identity matrix.

Binary observables 101

A binary (projective) observable A :

$$
A=A^{\dagger} \quad \text { and } \quad A^{2}=\mathbb{1},
$$

where $\mathbb{1}$ is the identity matrix.
Measuring A on ρ gives probability distribution $\{p(+1), p(-1)\}$ Two outcomes \Longrightarrow fully characterised by its expectation value

$$
g=\operatorname{tr}(A \rho)=p(+1)-p(-1) \in[-1,1] .
$$

Binary observables 101

A binary (projective) observable A :

$$
A=A^{\dagger} \quad \text { and } \quad A^{2}=\mathbb{1},
$$

where $\mathbb{1}$ is the identity matrix.
Measuring A on ρ gives probability distribution $\{p(+1), p(-1)\}$ Two outcomes \Longrightarrow fully characterised by its expectation value

$$
g=\operatorname{tr}(A \rho)=p(+1)-p(-1) \in[-1,1] .
$$

Intuition: Anti-commutation (in the operator sense) is a signature of incompatibility, e.g. $\left\{\sigma_{X}, \sigma_{z}\right\}=\sigma_{X} \sigma_{Z}+\sigma_{Z} \sigma_{X}=0$.

Binary observables - intuition made rigorous

Theorem (Wehner, Winter'08)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be binary observables, which pairwise anti-commute $\left\{A_{j}, A_{k}\right\}=2 \delta_{j k} \mathbb{1}$ and let $g \in[-1,1]^{n}$ be a (column) vector of expectation values, $g_{j}=\operatorname{tr}\left(A_{j} \rho\right)$. For every ρ we have

$$
g^{\top} g=\sum_{j} g_{j}^{2} \leq 1
$$

Binary observables - intuition made rigorous

Theorem (Wehner, Winter'08)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be binary observables, which pairwise anti-commute $\left\{A_{j}, A_{k}\right\}=2 \delta_{j k} \mathbb{1}$ and let $g \in[-1,1]^{n}$ be a (column) vector of expectation values, $g_{j}=\operatorname{tr}\left(A_{j} \rho\right)$. For every ρ we have

$$
g^{\top} g=\sum_{j} g_{j}^{2} \leq 1
$$

Uncertainty relation in disguise!
anti-commutation of observables (measure of incompatibility)

$$
\sum_{j} g_{j}^{2} \leq 1
$$

(measure of uncertainty)

Binary observables - intuition made rigorous

Theorem (Wehner, Winter'08)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be binary observables, which pairwise anti-commute $\left\{A_{j}, A_{k}\right\}=2 \delta_{j k} \mathbb{1}$ and let $g \in[-1,1]^{n}$ be a (column) vector of expectation values, $g_{j}=\operatorname{tr}\left(A_{j} \rho\right)$. For every ρ we have

$$
g^{\top} g=\sum_{j} g_{j}^{2} \leq 1
$$

Uncertainty relation in disguise!
anti-commutation of observables
(measure of incompatibility)

$$
\sum_{j} g_{j}^{2} \leq 1
$$

(measure of uncertainty)

Strong statement: if one is deterministic $\left(g_{1}= \pm 1\right)$, then everything else is uniform ($g_{j}=0$ for $j \geq 2$)!

Binary observables - intuition made rigorous

Theorem (Wehner, Winter'08)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be binary observables, which pairwise anti-commute $\left\{A_{j}, A_{k}\right\}=2 \delta_{j k} \mathbb{1}$ and let $g \in[-1,1]^{n}$ be a (column) vector of expectation values, $g_{j}=\operatorname{tr}\left(A_{j} \rho\right)$. For every ρ we have

$$
g^{\top} g=\sum_{j} g_{j}^{2} \leq 1
$$

Uncertainty relation in disguise!

anti-commutation of observables
(measure of incompatibility)

$$
\sum_{j} g_{j}^{2} \leq 1
$$

(measure of uncertainty)

Strong statement: if one is deterministic $\left(g_{1}= \pm 1\right)$, then everything else is uniform ($g_{j}=0$ for $j \geq 2$)!

What if the observables only approximately anti-commute? How do we even quantify partial anti-commutation?

Partial anti-commutation

Effective anti-commutator of A_{j} and A_{k} :

$$
\varepsilon_{j k}:=\frac{1}{2} \operatorname{tr}\left(\left\{A_{j}, A_{k}\right\} \rho\right)
$$

Note $\varepsilon_{j k} \in[-1,1]$ and if $\left\{A_{j}, A_{k}\right\}=0$ (operator sense) then $\varepsilon_{j k}=0$ for all states.

Partial anti-commutation

Effective anti-commutator of A_{j} and A_{k} :

$$
\varepsilon_{j k}:=\frac{1}{2} \operatorname{tr}\left(\left\{A_{j}, A_{k}\right\} \rho\right)
$$

Note $\varepsilon_{j k} \in[-1,1]$ and if $\left\{A_{j}, A_{k}\right\}=0$ (operator sense) then $\varepsilon_{j k}=0$ for all states.
Anti-commutation matrix:

$$
T:=\left(\begin{array}{cccc}
1 & \varepsilon_{12} & \cdot & \varepsilon_{1 n} \\
\varepsilon_{12} & 1 & \cdot & \varepsilon_{2 n} \\
\cdot & \cdot & \cdot & \cdot \\
\varepsilon_{1 n} & \varepsilon_{2 n} & \cdot & 1
\end{array}\right)
$$

Partial anti-commutation

Effective anti-commutator of A_{j} and A_{k} :

$$
\varepsilon_{j k}:=\frac{1}{2} \operatorname{tr}\left(\left\{A_{j}, A_{k}\right\} \rho\right)
$$

Note $\varepsilon_{j k} \in[-1,1]$ and if $\left\{A_{j}, A_{k}\right\}=0$ (operator sense) then $\varepsilon_{j k}=0$ for all states.
Anti-commutation matrix:

$$
T:=\left(\begin{array}{cccc}
1 & \varepsilon_{12} & \cdot & \varepsilon_{1 n} \\
\varepsilon_{12} & 1 & \cdot & \varepsilon_{2 n} \\
\cdot & \cdot & \cdot & \cdot \\
\varepsilon_{1 n} & \varepsilon_{2 n} & \cdot & 1
\end{array}\right)
$$

If $\left\{A_{j}, A_{k}\right\}=0$ for all $j \neq k$ then $T=\mathbb{1}$
exactly the case considered in [WW'08].

Partial anti-commutation

Theorem

A vector of expectation values g and an anti-commutation matrix T are compatible iff

$$
g g^{\top} \leq T
$$

Proof: Suppose $\rho=|\psi\rangle\langle\psi|$ and consider $x_{0}=|\psi\rangle, x_{j}=A_{j}|\psi\rangle$ for $j=1,2, \ldots, n$. The Gram matrix of $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is

$$
G=\left(\begin{array}{cc}
1 & g^{\top} \\
g & T
\end{array}\right) \geq 0 \quad \text { (by definition) }
$$

Partial anti-commutation

Theorem

A vector of expectation values g and an anti-commutation matrix T are compatible iff

$$
g g^{\top} \leq T
$$

Proof: Suppose $\rho=|\psi\rangle\langle\psi|$ and consider $x_{0}=|\psi\rangle, x_{j}=A_{j}|\psi\rangle$ for $j=1,2, \ldots, n$. The Gram matrix of $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is

$$
G=\left(\begin{array}{cc}
1 & g^{\top} \\
g & T
\end{array}\right) \geq 0 \quad \text { (by definition) }
$$

Schur complement condition: if $A>0$ and $X=\left(\begin{array}{cc}A & B^{\top} \\ B & C\end{array}\right)$ then $X \geq 0 \Longleftrightarrow C-B A^{-1} B^{\top} \geq 0$.

What the $g g^{\top} \leq T$?

Geometric: T defines an ellipsoid, g must lie inside

What the $g g^{\top} \leq T$?

Geometric: T defines an ellipsoid, g must lie inside
Example for 2 measurements
Allowed pairs (g_{1}, g_{2}) for fixed ε

What the $g g^{\top} \leq T$?
Geometric: T defines an ellipsoid, g must lie inside
Example for 2 measurements
Allowed pairs (g_{1}, g_{2}) for fixed ε

$\bigcirc \varepsilon=0$
$\bigcirc \varepsilon=0.5$
$\bigcirc \varepsilon=0.9$
Deterministic $\left(g_{1}, g_{2}= \pm 1\right)$ allowed iff $|\varepsilon|=1$

What the $g g^{\top} \leq T$?
Geometric: T defines an ellipsoid, g must lie inside
Example for 2 measurements
Allowed pairs (g_{1}, g_{2}) for fixed ε

$\bigcirc \varepsilon=0$
$\bigcirc \varepsilon=0.5$
$\bigcirc \varepsilon=0.9$
Deterministic $\left(g_{1}, g_{2}= \pm 1\right)$ allowed iff $|\varepsilon|=1$

If $|\varepsilon|<1$ then there is some uncertainty

But what about entropies?

But what about entropies?

fair, n-sided coin
$\operatorname{Pr}[K=k]=\frac{1}{n}$

But what about entropies?

fair, n-sided coin

$$
\operatorname{Pr}[K=k]=\frac{1}{n}
$$

But what about entropies?

fair, n-sided coin

$$
\operatorname{Pr}[K=k]=\frac{1}{n}
$$

But what about entropies?
fair, n-sided coin

$$
\operatorname{Pr}[K=k]=\frac{1}{n}
$$

$$
\rho_{X K}=\frac{1}{n} \sum_{k} \rho_{X_{k}} \otimes|k\rangle\langle k|
$$

But what about entropies?

fair, n-sided coin

$$
\operatorname{Pr}[K=k]=\frac{1}{n}
$$

$$
\rho_{X K}=\frac{1}{n} \sum_{k} \rho_{X_{k}} \otimes|k\rangle\langle k|
$$

want to bound α-Rényi entropy

$$
H_{\alpha}(X \mid K)=\frac{\alpha}{1-\alpha} \log \frac{\sum_{k} w_{\alpha}\left(g_{k}\right)}{n}
$$

where $w_{\alpha}(g)=\left[\left(\frac{1+g}{2}\right)^{\alpha}+\left(\frac{1-g}{2}\right)^{\alpha}\right]^{1 / \alpha}$

But what about entropies?

fair, n-sided coin

$$
\operatorname{Pr}[K=k]=\frac{1}{n}
$$

$$
\begin{gathered}
\text { minimise } H_{\alpha}(X \mid K) \\
\text { over } g g^{\top} \leq T
\end{gathered}
$$

want to bound α-Rényi entropy

$$
H_{\alpha}(X \mid K)=\frac{\alpha}{1-\alpha} \log \frac{\sum_{k} w_{\alpha}\left(g_{k}\right)}{n}
$$

where $\left.w_{\alpha}(g)=\left[\left(\frac{1+g}{2}\right)^{\alpha}+\left(\frac{1-g}{2}\right)^{\alpha}\right]^{1 / \alpha}\right]$

But what about entropies?

fair, n-sided coin

$$
\operatorname{Pr}[K=k]=\frac{1}{n}
$$

minimise $H_{\alpha}(X \mid K)$ over $g g^{\top} \leq T$
: not so simple. . .
where $\left.w_{\alpha}(g)=\left[\left(\frac{1+g}{2}\right)^{\alpha}+\left(\frac{1-g}{2}\right)^{\alpha}\right]^{1 / \alpha}\right]$

Spherical relaxation

"bloat" the ellipsoid until it becomes a sphere...

radius $r=\|T\|_{\infty}$

Spherical relaxation

"bloat" the ellipsoid until it becomes a sphere...

maximise $\sum_{k} w_{\alpha}\left(g_{k}\right)$ over $g g^{\top} \leq T$

maximise $\sum_{k} w_{\alpha}\left(g_{k}\right)$
over $g \in[-1,1]^{n}, \sum_{k} g_{k}^{2} \leq r$
radius $r=\|T\|_{\infty}$

Spherical relaxation

"bloat" the ellipsoid until it becomes a sphere...

radius $r=\|T\|_{\infty}$
maximise $\sum_{k} w_{\alpha}\left(g_{k}\right)$ over $g g^{\top} \leq T$

maximise $\sum_{k} w_{\alpha}\left(g_{k}\right)$
over $g \in[-1,1]^{n}, \sum_{k} g_{k}^{2} \leq r$

maximise $\sum_{k} w_{\alpha}\left(\sqrt{t_{k}}\right)$
over $t \in[0,1]^{n}, \quad \sum_{k} t_{k} \leq r$

Spherical relaxation

$\operatorname{maximise} \sum_{k} w_{\alpha}\left(\sqrt{t_{k}}\right)$
over $t \in[0,1]^{n}, \quad \sum_{k} t_{k} \leq r$

Spherical relaxation

> maximise $\sum_{k} w_{\alpha}\left(\sqrt{t_{k}}\right)$ over $t \in[0,1]^{n}, \quad \sum_{k} t_{k} \leq r$

for $\alpha \in\left[1, \frac{3}{2}\right]$
$w_{\alpha}(\sqrt{t})$ is convex

Spherical relaxation

$\operatorname{maximise} \sum_{k} w_{\alpha}\left(\sqrt{t_{k}}\right)$
over $t \in[0,1]^{n}, \quad \sum_{k} t_{k} \leq r$

for $\alpha \in\left[1, \frac{3}{2}\right]$
$w_{\alpha}(\sqrt{t})$ is convex
optimal to choose

$$
t_{k}= \begin{cases}1 & \text { for } 1 \leq k \leq\lfloor r\rfloor \\ r-\lfloor r\rfloor & \text { for } k=\lfloor r\rfloor+1 \\ 0 & \text { otherwise }\end{cases}
$$

Spherical relaxation

> maximise $\sum_{k} w_{\alpha}\left(\sqrt{t_{k}}\right)$
> over $t \in[0,1]^{n}, \quad \sum_{k} t_{k} \leq r$

$$
\begin{aligned}
& \text { for } \alpha \in\left[1, \frac{3}{2}\right] \\
& w_{\alpha}(\sqrt{t}) \text { is convex } \\
& \text { optimal to choose }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \alpha \in[2, \infty) \\
& w_{\alpha}(\sqrt{t}) \text { is concave } \\
& \text { optimal to choose }
\end{aligned}
$$

$$
t_{k}= \begin{cases}1 & \text { for } 1 \leq k \leq\lfloor r\rfloor \\ r-\lfloor r\rfloor & \text { for } k=\lfloor r\rfloor+1, \\ 0 & \text { otherwise }\end{cases}
$$

$$
t_{k}=\frac{r}{n}
$$

Spherical relaxation

\quad maximise $\sum_{k} w_{\alpha}\left(\sqrt{t_{k}}\right)$
over $t \in[0,1]^{n}, \quad \sum_{k} t_{k} \leq r$

for $\alpha \in\left[1, \frac{3}{2}\right]$
$w_{\alpha}(\sqrt{t})$ is convex
optimal to choose

for $\alpha \in[2, \infty)$
$w_{\alpha}(\sqrt{t})$ is concave
optimal to choose

$$
t_{k}= \begin{cases}1 & \text { for } 1 \leq k \leq\lfloor r\rfloor \\ r-\lfloor r\rfloor & \text { for } k=\lfloor r\rfloor+1 \\ 0 & \text { otherwise. }\end{cases}
$$

$$
t_{k}=\frac{r}{n}
$$

Explicit lower bounds on $H_{\alpha}(X \mid K)$ for $\alpha \in\left[1, \frac{3}{2}\right] \cup[2, \infty)$ in terms of $r=\|T\|_{\infty}$ only

How good is this?

For the Shannon ($\alpha \rightarrow 1$) entropy for two measurements (no assumptions on the dimension!) we get:

$$
H(X \mid K) \geq \frac{1}{2} h_{\text {bin }}\left(\frac{1+\sqrt{|\varepsilon|}}{2}\right)
$$

How good is this?

For the Shannon ($\alpha \rightarrow 1$) entropy for two measurements (no assumptions on the dimension!) we get:

$$
H(X \mid K) \geq \frac{1}{2} h_{\text {bin }}\left(\frac{1+\sqrt{|\varepsilon|}}{2}\right)
$$

qubit version known (Sánchez-Ruiz'05)
for two projective measurements on a qubit

$$
c=\frac{1+|\varepsilon|}{2}
$$

Uncertainty can be certified device-independently!

A_{j} and A_{k} give CHSH violation of $\beta_{j k} \Rightarrow\left|\varepsilon_{j k}\right| \leq \frac{\beta_{i k}}{4} \sqrt{8-\beta_{j k}^{2}}$
[Tomamichel, Hänggi' 13]

Certification procedure

(based on a game proposed by Slofstra)

- For every pair (j, k) play a distinct CHSH game to estimate $\beta_{j k}$ (need i.i.d. assumption) and calculate a bound on $\left|\varepsilon_{j k}\right|$
- Compute a bound on $\|T\|_{\infty}$
- Use $\|T\|_{\infty}$ to find explicit lower bounds on $H_{\alpha}(X \mid K)$
- Be uncertain about the outcome

Uncertainty can be certified device-independently!

A_{j} and A_{k} give CHSH violation of $\beta_{j k} \Longrightarrow\left|\varepsilon_{j k}\right| \leq \frac{\beta_{i k}}{4} \sqrt{8-\beta_{j k}^{2}}$
[Tomamichel, Hänggi' 13]

Certification procedure

(based on a game proposed by Slofstra)

- For every pair (j, k) play a distinct CHSH game to estimate $\beta_{j k}$ (need i.i.d. assumption) and calculate a bound on $\left|\varepsilon_{j k}\right|$
- Compute a bound on $\|T\|_{\infty}$
- Use $\|T\|_{\infty}$ to find explicit lower bounds on $H_{\alpha}(X \mid K)$
- Be uncertain about the outcome $\ddot{\bullet}$

Procedure is robust:
any CHSH violation implies strictly positive uncertainty

Open questions

- Applications to cryptography For the application we had in mind we need to condition on additional classical information. Under our current assumptions this is not possible. Impose some extra assumptions? Find applications for which conditioning is not necessary?

Open questions

- Applications to cryptography For the application we had in mind we need to condition on additional classical information. Under our current assumptions this is not possible. Impose some extra assumptions? Find applications for which conditioning is not necessary?
- Extension to ternary observables Projective measurements with three outcomes can be represented as unitary matrices with eigenvalues $\left\{1, \omega, \omega^{2}\right\}$ where $\omega=\exp \left(\frac{2 \pi i}{3}\right)$. Incompatible (mutually unbiased) measurements are known to satisfy "twisted anti-commutation relation": $Z_{3} X_{3}=\omega X_{3} Z_{3}$. Can we generalise our techniques to cover this case?

Thanks for you attention!

The annoying counterexample

Consider

$$
A_{1}=\left(\begin{array}{ll}
\sigma_{z} & \\
& \sigma_{z}
\end{array}\right), A_{2}=\left(\begin{array}{ll}
\sigma_{z} & \\
& -\sigma_{z}
\end{array}\right), \rho=\frac{1}{2}\left(\begin{array}{llll}
1 & & & \\
& 0 & & \\
& & 1 & \\
& & & 0
\end{array}\right) .
$$

Easy to verify that

$$
\left\{A_{1}, A_{2}\right\}=2\left(\begin{array}{ll}
\mathbb{1} & \\
& -\mathbb{1}
\end{array}\right) \text { and } \varepsilon_{12}=0 .
$$

This implies that uncertainty: $g_{1}^{2}+g_{2}^{2} \leq 1$. This is actually true: $g_{1}=1$ and $g_{2}=0$. Unfortunately, if we are told in which 2-dimensional subspace we are, no more uncertainty remains...

