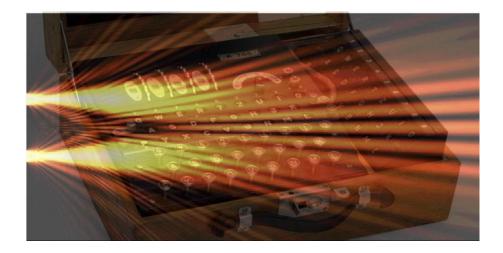
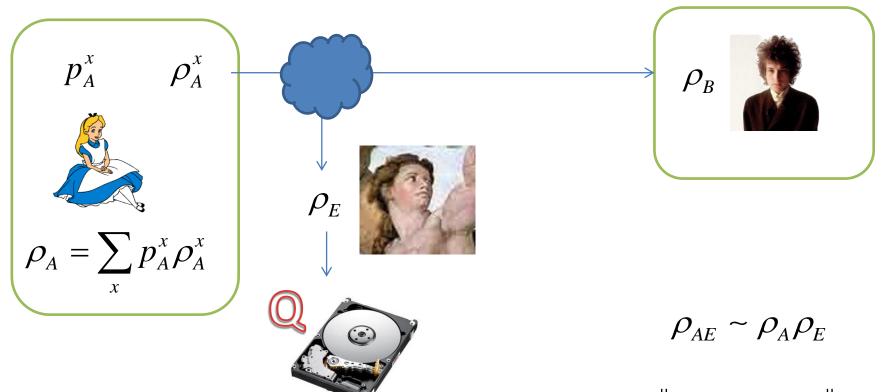
Quantum data locking and the locking capacity of a quantum channel

Guha, Hayden, Krovi, Lloyd, Lupo, Shapiro, Takeoka, Wilde, Winter

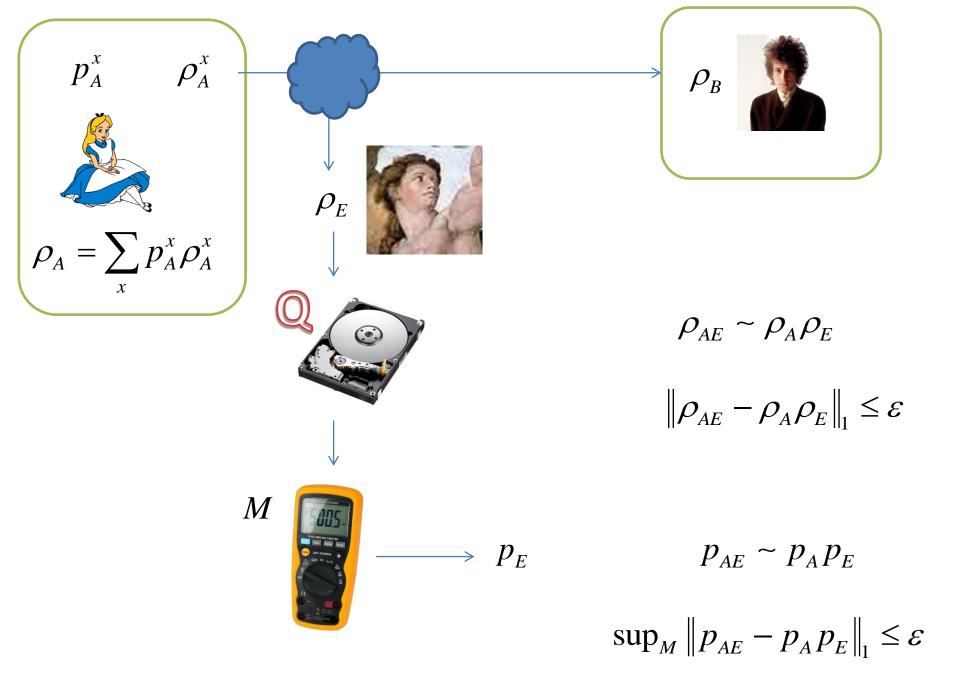


Summary

Notions of Security Quantum Data Locking Locking Capacity Trading Security for Rate Locked Key Distribution



 $\left\|\rho_{AE}-\rho_{A}\rho_{E}\right\|_{1}\leq\varepsilon$



Pre-measurement security (Holevo inf.)

$$S(\rho_{AE} \parallel \rho_A \rho_E) = I(A, E)_{\rho_{AE}} = \chi(\{p^x, \rho_E^x\})$$

After-measurement security (accessible inf.)

$$\sup_{M} S(p_{AE} \parallel p_{A} p_{E}) = I_{acc} \left(\left\{ p^{x}, \rho_{E}^{x} \right\} \right) = I(A, E)_{p_{AE}}$$

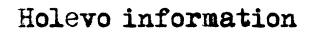
Quantum Discord
$$D = I - I_{acc} \ge 0$$

Ollivier and Zurek PRL **88**, 017901 (2001) Henderson and Vedral JPA **34**, 6899 (2001)

Total proportionality

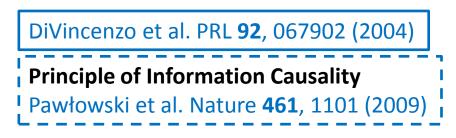
If Eve acquires **n** bits, her information about the message should **not** increase by more than **n** bits.

$$I(A, EK) \leq I(A, E) + H(K)$$

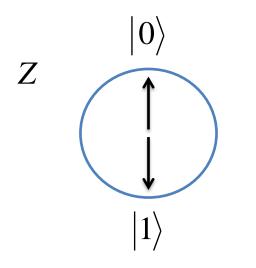


PR-box

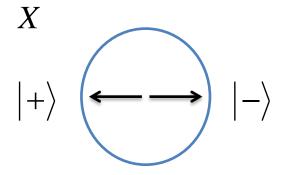
Accessible information



Quantum Data Locking

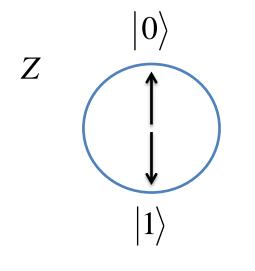


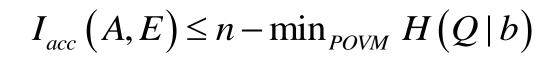
Alice and Bob secretly agree on one of two conjugate bases

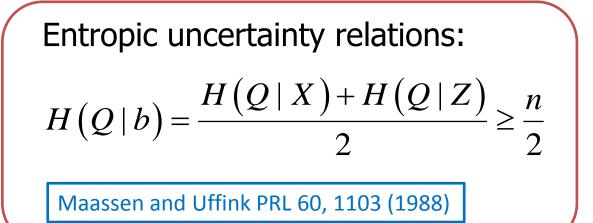


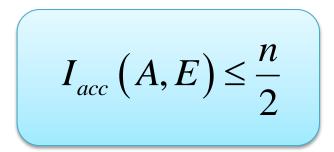
Alice sends to Bob **n** bits of classical inf using the chosen basis

Quantum Data Locking









 $\begin{array}{c} X \\ |+\rangle \end{array} \longleftrightarrow |-\rangle \end{array}$

DiVincenzo et al. PRL 92, 067902 (2004)

Strong Data Locking

K unitaries
$$U_k$$
 acting on n qubitsK bases $|j_k\rangle = U_k |j\rangle$ $k = 1, 2, \dots K$

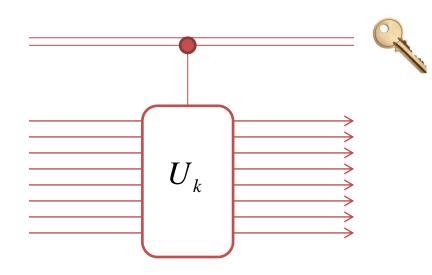
$$I_{acc}(A, E) \le n - \min_{POVM} H(Q \mid b)$$

Strong ent. unc. relations

$$H(Q \mid b) = \frac{1}{K} \sum_{k} H(Q \mid b_{k}) \ge (1 - \varepsilon)n$$

$$\begin{bmatrix} I_{acc}(A, E) \le \varepsilon n \\ a = 1/4 \end{bmatrix} \qquad \varepsilon \approx K^{-a}$$

Strong Data Locking



Haar-distributed random unitaries:

Hayden et al. CMP **250**, 371 (2004)

Pseudo-random unitaries:

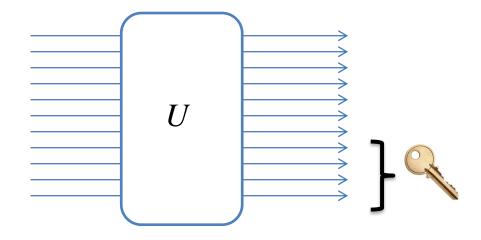
Lupo, Wilde, Lloyd PRA 90, 022326 (2014)

Explicit and efficient constructions:

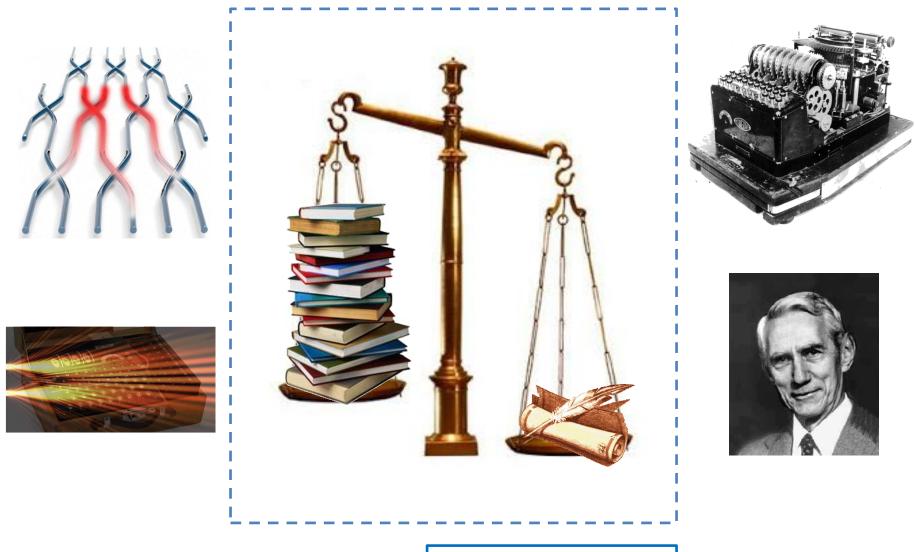
Fawzi et al. J. ACM **60**, 44 (2013)

+ limited access to a subset of qubits

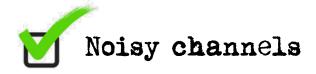
Dupuis et al. P Royal S A 469, 2159 (2013)

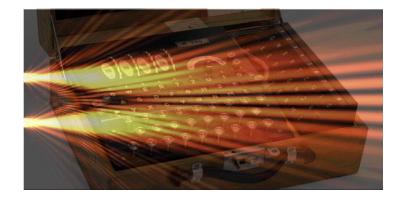


Quantum Enigma Machines

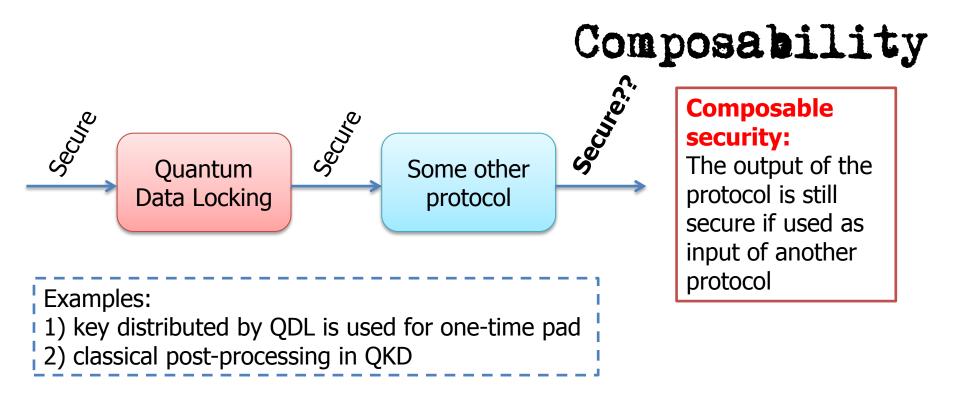


Lloyd, arXiv:1307.0380





Quantum Enigma Machines

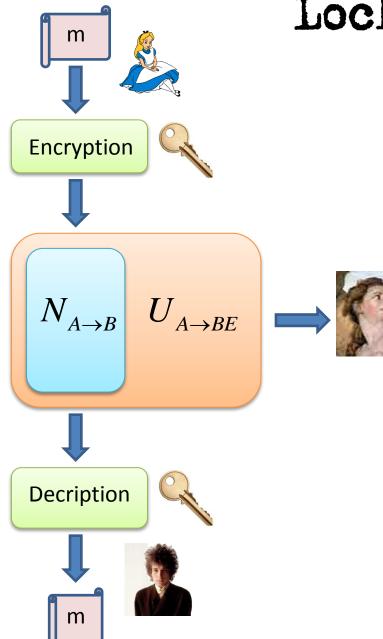


Accessible information criterion **is not composable** in general

Koenig et al. PRL 98 140502 (2007)

Physical assumption:

Eve's quantum memory storage time is finite. (and Alice and Bob know it!)



Locking noisy channels

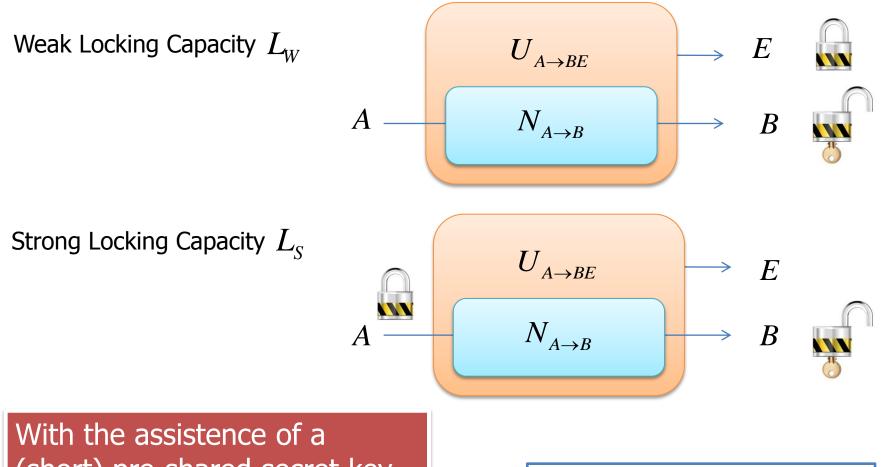
All communication systems suffer from **physical-layer noise**

Error correction should be applied to achieve reliable (enigmatized) communication

Noisy channel can always be complemented to a **unitary transformation**

Eve has access to the **complement** of Bob output.

Weak and Strong Locking



(short) pre-shared secret key. # secret bits grows less than linearly in # of channel uses.

Guha et al. PRX 4, 011016 (2014)

	Locking nois	y channels
Name Symbol	The price of error correction is to reduce the communication rate	The capacity of the channel is the max communication rate (<i>with zero error for asymptotically long messages</i>)
Classical capacity C Reliable communication from Alice to Bob. No secrecy. Weak Locking capacity L_W Reliable comm. from A to B. Accessible inf. secrecy. Private capacity P Reliable communication from A to B. Holevo inf. secrecy.		

 $P \leq L_W \leq C$

Guha et al. PRX 4, 011016 (2014)

Locking vs Private Capacity

$$L_{W} \leq \sup \frac{1}{n} \Big[\chi(A, B) - I_{acc}(A, E) \Big]$$

$$L_{W} \leq \sup \frac{1}{n} \Big[\chi(A, B) - I_{acc}(A, E) \Big]$$

$$\leq \sup \frac{1}{n} \Big[\chi(A, B) - \chi(A, E) \Big] + \sup \frac{1}{n} \Big[\chi(A, E) - I_{acc}(A, E) \Big]$$

$$= P + \sup \frac{1}{n} D$$
Quantum discord is an upper bound to the gain provided by QDL.

Guha et al. PRX 4, 011016 (2014)

Is this upper bound achievable?

Is there a nonzero gap between $L_{\!\scriptscriptstyle W}$ and P ?

Locking vs Private Capacity

Upper bound achievable (and single-letter) for Hadamard channels (complementary to ent breaking)

Example:

$$L_{W} = \sup \chi(A, B) - I_{acc}(A, E)$$

Winter, arXiv:1403.6361

$$U_{A \to BE} \xrightarrow{E} |\psi_i^k\rangle \qquad X |\psi_i^0\rangle = \lambda_i |\psi_i^0\rangle$$

$$|i\rangle|k\rangle \xrightarrow{A} \xrightarrow{N_{A \to B}} |i\rangle|k\rangle \qquad Z |\psi_i^1\rangle = \lambda_i |\psi_i^1\rangle$$

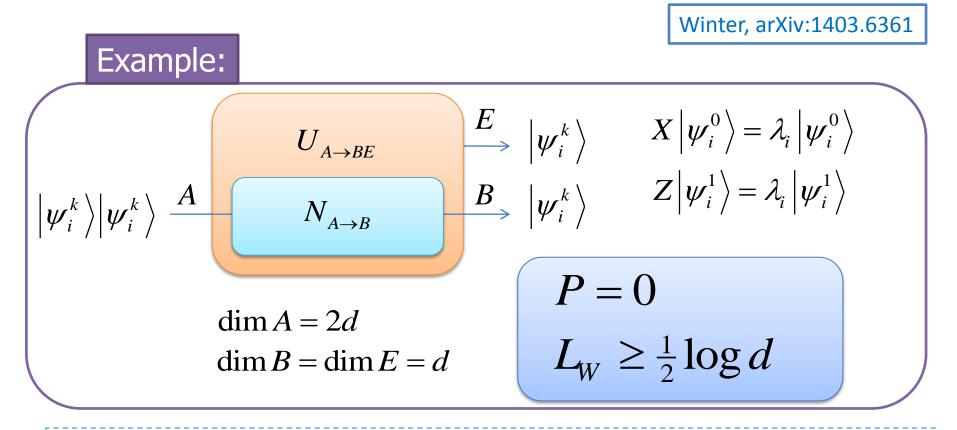
$$\lim_{k \to B} A = \lim_{k \to B} B = 2d$$

$$\lim_{k \to B} E = 2d$$

$$L_W = 1 + \frac{1}{2}\log d$$

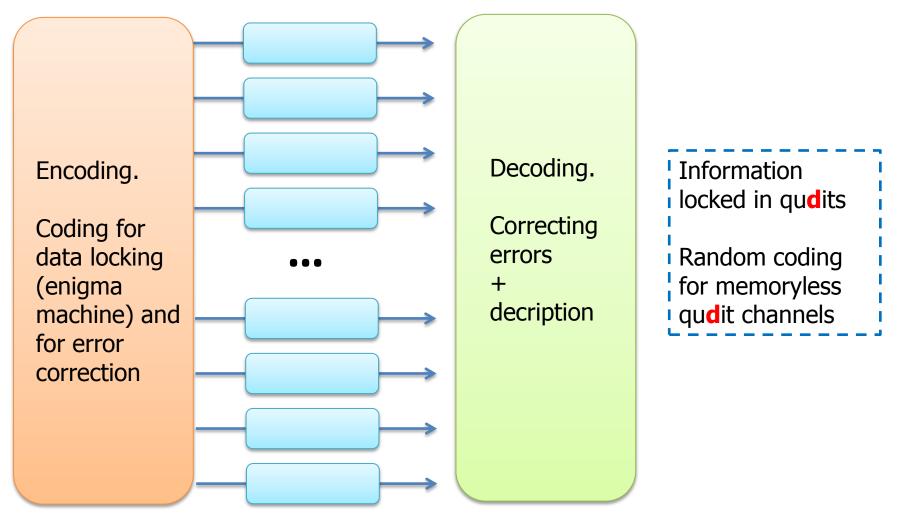
Locking vs Private Capacity

There exist channel with zero private capacity having arbitrary high locking capacity



Proof strategy includes: bound the min-entropy using the entropic uncertainty relations, + use min-entropy extractor

Random coding



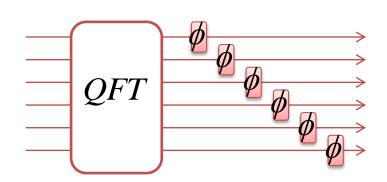
Memoryless qu<mark>d</mark>it channel

Lupo, Lloyd, arXiv: 1406.4418

Linear Optics

Analogous to **d**-dimensional QKD with *K* different bases

1 photon over d modes (unary encoding)



$$\left| j_{k} \right\rangle = U_{k} \left| j \right\rangle$$

$$U_{k} = \sum_{\omega} e^{i\phi_{k}(\omega)} |\omega\rangle\langle\omega|$$

$$\left|\omega\right\rangle = \frac{1}{\sqrt{N}} \sum_{j} e^{i2\pi j\omega/N}$$

Lupo, Lloyd, arXiv: 1406.4418

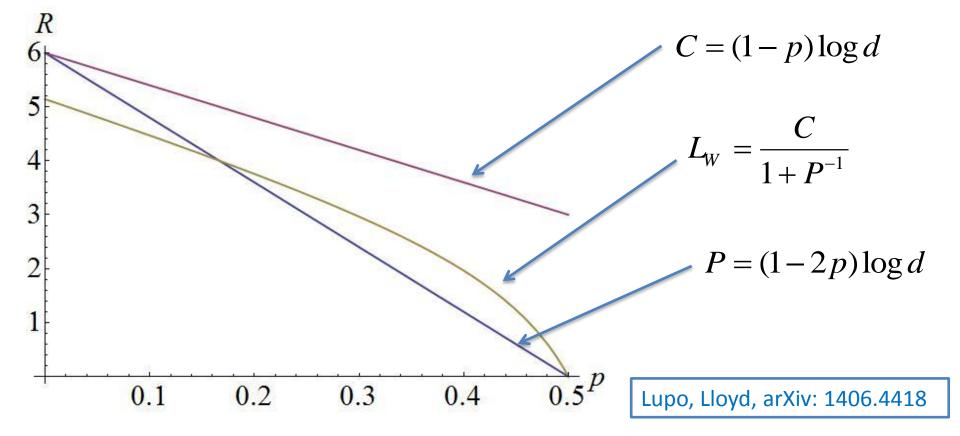
Locked communication

Qudit erasure channel with p < 1/2.

(It models unary encoding with linear loss less than 50%).

Use channel to produce a secret key (at the private capacity rate).

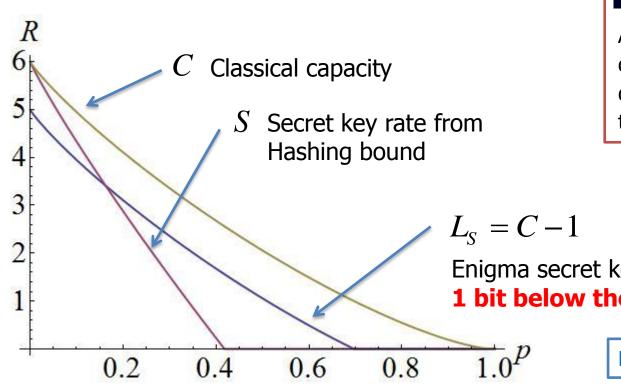
Use the key to lock the message.



Locked key generation

Qudit depolarizing channel.

- \star Start with a small secret key.
- \star Use the key to "data lock" the message.
- ★ Wait for Eve's quantum memory to decohere, then recycle part of the key and start again



An assumption about the coherence time of Eve's quantum memory is required to guarantee security

Enigma secret key generation rate 1 bit below the classical capacity!

Lupo, Lloyd, arXiv: 1406.4418

Conclusion

Large Gap between Security Criteria Trading Security for Rate High Gain in QKD (under assumption on Eve's Technology!)