Experimental plug\&play quantum coin flipping

Anna Pappa

1 September 2014

Coin Flipping

Why do we need it?

1. Bit commitment
2. Leader election and zero-knowledge protocols
3. Secure identification

Coin Flipping with bias ϵ

- If Alice and Bob are honest then

$$
\operatorname{Pr}[c=0]=\operatorname{Pr}[c=1]=\frac{1}{2}
$$

- If Alice cheats and Bob is honest then

$$
p_{*}^{A}:=\max _{A}\{\operatorname{Pr}[c=0], \operatorname{Pr}[c=1]\} \leq \frac{1}{2}+\epsilon
$$

- If Bob cheats and Alice is honest then

$$
p_{*}^{B}:=\max _{B}\{\operatorname{Pr}[c=0], \operatorname{Pr}[c=1]\} \leq \frac{1}{2}+\epsilon
$$

Coin Flipping with bias ϵ

- If Alice and Bob are honest then

$$
\operatorname{Pr}[c=0]=\operatorname{Pr}[c=1]=\frac{1}{2}
$$

- If Alice cheats and Bob is honest then

$$
p_{*}^{A}:=\max _{A}\{\operatorname{Pr}[c=0], \operatorname{Pr}[c=1]\} \leq \frac{1}{2}+\epsilon
$$

- If Bob cheats and Alice is honest then

$$
p_{*}^{B}:=\max _{B}\{\operatorname{Pr}[c=0], \operatorname{Pr}[c=1]\} \leq \frac{1}{2}+\epsilon
$$

The cheating probability of the CF protocol is $p_{*}=\max \left\{p_{*}^{A}, p_{*}^{B}\right\}$.

Coin flipping with information-theoretic security

Impossibility of classical CF

$$
p_{c}=1
$$

Impossibility of perfect quantum CF (May97,LC98) $\quad p_{q}>1 / 2$
Several non-perfect protocols (ATVY00, SR02, Amb04) $p_{q} \leq 3 / 4$
Kitaev's SDP proof (2003) $\quad p_{q} \geq 1 / \sqrt{2}$
Chailloux, Kerenidis (2009)
$p_{q} \approx 1 / \sqrt{2}$

In practice

Practical Considerations :

- Technological state of the art (ex: state generation)
- System transmission losses and noise
- Detectors' dark counts and finite quantum efficiency
- Quantum memory

In practice

Practical Considerations :

- Technological state of the art (ex: state generation)
- System transmission losses and noise
- Detectors' dark counts and finite quantum efficiency
- Quantum memory

Loss-tolerant Protocols :

- Berlin et al (2009): $p_{q}=0.9$
- Chailloux (2010): $p_{q}=0.86$

In practice

Practical Considerations :

- Technological state of the art (ex: state generation)
- System transmission losses and noise
- Detectors' dark counts and finite quantum efficiency
- Quantum memory

Loss-tolerant Protocols :

- Berlin et al (2009): $p_{q}=0.9$
- Chailloux (2010): $p_{q}=0.86$

Implementations :

- Molina-Terriza et al (2005)
- Nguyen et al (2008)
- Berlin et al (2011)

The Protocol

The protocol uses K states $\left|\Phi_{\alpha_{i}, c_{i}}\right\rangle$, where α_{i} : basis and c_{i} : bit

$$
\begin{aligned}
\left|\Phi_{\alpha_{i}, 0}\right\rangle & =\sqrt{y}|0\rangle+(-1)^{\alpha_{i}} \sqrt{1-y}|1\rangle \\
\left|\Phi_{\alpha_{i}, 1}\right\rangle & =\sqrt{1-y}|0\rangle-(-1)^{\alpha_{i}} \sqrt{y}|1\rangle
\end{aligned}
$$

For any bit $\beta \in\{0,1\}$, we define the measurement basis:

$$
\mathcal{B}_{\beta}=\left\{\left|\Phi_{\beta, 0}\right\rangle,\left|\Phi_{\beta, 1}\right\rangle\right\}
$$

The Protocol

Alice

Bob

choose $\left\{\alpha_{i}, c_{i}\right\}_{1}^{K}$

$\longleftarrow j, b \quad j$: first measured pulse,
c_{j}^{\prime} : outcome, $b \in_{R}\{0,1\}$
$\xrightarrow{\alpha_{j}, c_{j}}$ If $\alpha_{j}=\beta_{j}$ and $c_{j} \neq c_{j}^{\prime}$, abort.
Else $x=c_{j} \oplus b$

The Protocol

Alice

choose $\left\{\alpha_{i}, c_{i}\right\}_{1}^{K}$

Bob

$\longleftarrow j, b \quad j$: first measured pulse, c_{j}^{\prime} : outcome, $b \in_{R}\{0,1\}$ If $\alpha_{j}=\beta_{j}$ and $c_{j} \neq c_{j}^{\prime}$, abort. Else $x=c_{j} \oplus b$

Properties

- No need for entanglement, use of attenuated laser source
- No need for a quantum memory
- Tolerance to losses and noise
- Small probability of honest players' abort

Security Analysis

Protocol Parameters : μ (photon number), K (number of pulses), y (state coefficient), d_{B} (dark counts), e (channel noise), Z (losses).

Security Analysis

Protocol Parameters : μ (photon number), K (number of pulses), y (state coefficient), d_{B} (dark counts), e (channel noise), Z (losses).

Honest Players - Abort :

$$
\underbrace{Z^{K}\left(1-d_{B}\right)^{K}}_{\operatorname{Pr} \text { (no click) }}+\frac{1}{4} \underbrace{\sum_{i=1}^{K}\left(1-d_{B}\right)^{i-1} d_{B} Z^{i}}_{\operatorname{Pr} \text { (dark count) }}+\frac{e}{2} \underbrace{\left[1-Z^{K}\left(1-d_{B}\right)^{K}-\sum_{i=1}^{K}\left(1-d_{B}\right)^{i-1} d_{B} Z^{i}\right]}_{\operatorname{Pr} \text { (channel noise) }}
$$

Security Analysis

Protocol Parameters : μ (photon number), K (number of pulses), y (state coefficient), d_{B} (dark counts), e (channel noise), Z (losses).

Honest Players - Abort :

$$
\underbrace{Z^{K}\left(1-d_{B}\right)^{K}}_{\operatorname{Pr} \text { (no click) }}+\frac{1}{4} \underbrace{\sum_{i=1}^{K}\left(1-d_{B}\right)^{i-1} d_{B} Z^{i}}_{\operatorname{Pr} \text { (dark count) }}+\frac{e}{2} \underbrace{\left[1-Z^{K}\left(1-d_{B}\right)^{K}-\sum_{i=1}^{K}\left(1-d_{B}\right)^{i-1} d_{B} Z^{i}\right]}_{\operatorname{Pr} \text { (channel noise) }}
$$

Dishonest Alice : $\quad p_{q}^{A} \leq \frac{3}{4}+\frac{1}{2} \sqrt{y(1-y)}$

Security Analysis

Protocol Parameters : μ (photon number), K (number of pulses), y (state coefficient), d_{B} (dark counts), e (channel noise), Z (losses).

Honest Players - Abort :
$\underbrace{Z^{K}\left(1-d_{B}\right)^{K}}_{\operatorname{Pr} \text { (no click) }}+\frac{1}{4} \underbrace{\sum_{i=1}^{K}\left(1-d_{B}\right)^{i-1} d_{B} Z^{i}}_{\operatorname{Pr} \text { (dark count) }}+\underbrace{\frac{e}{2}}_{\operatorname{Pr} \text { (channel noise) }} \underbrace{\left[1-Z^{K}\left(1-d_{B}\right)^{K}-\sum_{B}^{K}\left(1-d_{B}\right)^{i-1} d_{B} Z^{i}\right]}_{i=1}$

Dishonest Alice : $\quad p_{q}^{A} \leq \frac{3}{4}+\frac{1}{2} \sqrt{y(1-y)}$
Dishonest Bob: Depends on the distribution of the number of multiple photons in pulses (function of K, μ, y).

The Clavis2 system

The Clavis2 system

C: Circulator, BS: Beam Splitter, D0,D1: APD detectors, PM: Phase Modulator, FM: Faraday Mirror VATT: Variable Attenuator, PBS: Polarization Beam Splitter, BF: Bandpass Filter, DL: Delay Line

HW and SW enhancements on the Clavis2

Hardware Changes

- Changed the detectors to high efficiency/low noise ones.

Software Changes

- Use of rotated BB84 states \Rightarrow set coefficient y both in Alice and Bob.
- Use of very low μ : average photon number per pulse.

Adapting the security proofs

Assumptions

- Alice can create each state with equal probability and independently of Bob.
- Bob's basis β_{j} and bit b are chosen uniformly at random and independently of Alice.
- Bob's detectors have the same efficiencies.

Adaptation

- Symmetrization of losses: Bob makes the two detection efficiencies equal by throwing away some detection events.

Experimental Results

Experimental Results

- Strictly stronger-than-classical security
- Practical implementation, off-the-shelf equipment

Enhancing security against limited adversaries

Our protocol has information-theoretic security CF protocols against bounded adversaries
\rightarrow
$\rightarrow \quad \operatorname{Pr}[$ cheat $] \approx 0.5$

Enhancing security against limited adversaries

Our protocol has information-theoretic security CF protocols against bounded adversaries
$\rightarrow \operatorname{Pr}[$ cheat $]$ is high
$\rightarrow \quad \operatorname{Pr}[$ cheat $] \approx 0.5$

Computationally bounded: based on the inability to invert 1-way functions.
Noisy storage: based on the inability to maintain quantum information in a memory for a long period of time.

Enhancing security against limited adversaries

Our protocol has information-theoretic security CF protocols against bounded adversaries
$\rightarrow \operatorname{Pr}[c h e a t]$ is high
$\rightarrow \quad \operatorname{Pr}[$ cheat $] \approx 0.5$
Computationally bounded: based on the inability to invert 1-way functions.
Noisy storage: based on the inability to maintain quantum information in a memory for a long period of time.

Combined protocols

The security of our QCF protocol lies on top of the perfect security of the bounded protocols, adding a guarantee against unbounded adversaries.

Coin Flipping

Summary

- We have shown, both theoretically and experimentally, that flipping a single coin with security guarantees strictly better than classical, can be achieved with present day technology.
- We provided security proofs that take into account all standard imperfections, including asymmetries in detection efficiencies, multi-photon pulses, losses and noise.

Open Questions

- Side-channel or other types of attacks?
- Use of decoy states or some kind of error-correcting code?
- Further study of other types of bounded adversaries?

Coin Flipping

Summary

- We have shown, both theoretically and experimentally, that flipping a single coin with security guarantees strictly better than classical, can be achieved with present day technology.
- We provided security proofs that take into account all standard imperfections, including asymmetries in detection efficiencies, multi-photon pulses, losses and noise.

Open Questions

- Side-channel or other types of attacks?
- Use of decoy states or some kind of error-correcting code?
- Further study of other types of bounded adversaries?

Publications

A. Pappa, A. Chailloux, E. Diamanti, and I. Kerenidis, Practical Quantum Coin Flipping, Phys. Rev. A 84, 052305 (2011).
A. Pappa, P. Jouguet, T. Lawson, A. Chailloux, M. Legré, P. Trinkler, I. Kerenidis and E. Diamanti, Experimental plug and play quantum coin flipping, Nature Communications. 5, 3717 (2014).

