

Outline

- Public-key cryptography today
- Attacks on public-key cryptography
- The future: post-quantum crypto
- · The future: more than the basics

2

Diffie-Hellman'75 Merkle'75

- Can two people who have never met have a private conversation?
- Is it possible to digitally sign documents?

Public key cryptology: encryption

Clear Pro Box Private key

Private key

Private key

Deployment of cryptography

mostly for data and entity authentication

confidentiality
government/military secrets
DRM/content protection
telco: not end-to-end or with a backdoor
hard disk encryption: backdoor
most data in the cloud is not encrypted

COMSEC need authenticated encryption/secure channels
reordering, replay, deletion of packets
protection of meta-data

Cryptography is NOT used to protect Alice and Bob but to protect the (intellectual) property of corporations

All widely used public-key systems rely on 3 problems from algebraic number theory

Integer factorization: RSA (n = p.q)
Discrete LOGarithm : Diffie-Hellman, DSA: y = α^X
Elliptic Curve Discrete LOGarithm, ECDSA: Q = x.P

RSA-1024 ~ DLOG-1024 ~ ECC-146
RSA-2048 ~ DLOG-2048 ~ ECC-206
RSA-4096 ~ DLOG-4096 ~ ECC-282

Are these problems hard?

A hard problem is a problem that nobody works on (James L. Massey)

Invasive attacks

Passive: micro-probing

Active: modify circuits

- connect or disconnect security mechanism
 - · disconnect security sensors
 - RNG stuck at a fixed value
 - · reconstruct blown fuses
- cut or paste tracks with laser or focused ion beam

RSA with Chinese Remainder Theorem [Boneh-DeMillo-Lipton'96]

 $s = m^d \mod pq$ $d1 = d \mod (p-1)$ $d2 = d \mod (q-1)$

 $s1 = m^{d1} \mod p$ $s1' \neq m^{d1} \mod p$ $s2 = m^{d2} \mod q$ $s2 = m^{d2} \mod q$

s = a1 s1 + a2 s2 mod n s' = a1 s1' + a2 s2 mod n

now gcd (s-s',n) = q

since $s = s' \mod q$ and $s \neq s' \mod p$

- 00

Implementation attacks (CHES conference)

Academic

- · ever more sophisticated attacks
- · broad range of countermeasures: well understood
- new constructions with security proofs: leakage resilience
- · cost in practice: 2-100 times more

Industry

- needs security at cost 20-50% more
- · return to security by obscurity
- expensive (but confidential) validation program under Common Criteria

21

Many other ways to get the keys (in particular if you are the NSA)

- · Ask for private keys with a security letter
- · Substitute public keys
- Put a backdoor in a random number generator that allows to predict outputs

22

Dual_EC_DRBG or Dual Elliptic Curve Deterministic Random Bit Generator

- 1 of the 4 PRNGs in NIST SP 800-90A
- · Published 2006 based on earlier work by ANSI
- · Many warnings about security
 - security proof; but weak if one fails to choose P and Q at random, e.g. Q = d.P for a known d [Brown'06]
 - backdoor [Ferguson-Shumov'07]

Appendix: The security of Dual_EC_DRBG requires that the points P and Q be properly generated. To avoid using potentially weak points, the points specified in Appendix A.1 should be used.

Dual_EC_DRBG or Dual Elliptic Curve Deterministic Random Bit Generator

- NSA Bullrun program: NSA has been actively working to "Insert vulnerabilities into commercial encryption systems, IT systems, networks, and endpoint communications devices used by targets."
- 10 Sept. 2013, NYT: "Dual EC DRBG standard contains a backdoor for the NSA."
- Sept. 2013: NIST "strongly recommends" against the use of dual_EC_DRBG

Learning With Errors (LWE)

- \mathbf{Z}_{α}^{n} = n-dimensional vectors modulo q, error rate $\alpha << 1$
- Given m vectors a₁,...,a_m in Z_qⁿ
- Search: find secret vector s in Z_n given "noisy" inner products

$$b_1 = < a_1, s > + e_1$$

 $b_2 = < a_2, s > + e_2$

$$b_m = \langle a_m, s \rangle + e_m$$

Errors e_i are taken from Gaussian over Z with deviation αq

- Search LWE = noisy linear algebra modulo q
- m x n matrix A with rows $a_i : A s^t = b^t + e^t$

Learning With Errors (LWE)

- $\mathbf{Z}_{\mathbf{q}}^{\mathbf{n}}$ = n-dimensional vectors modulo q, error rate $\alpha << 1$
- Given m vectors $\mathbf{a}_1, ..., \mathbf{a}_m$ in $\mathbf{Z}_{\mathbf{q}^n}$
- m x n matrix A with rows a;
- · Decision: distinguish two distributions $(A, b^t = A s^t + e^t)$ from uniform distribution (A, b^t)
 - · algorithm for decision problem implies algo for search version
 - the secret vector **s** can have entries from the error distribution
- · LWE corresponds to BDD on

$$L = \{ \mathbf{z} \text{ in } Z^m \mid \mathbf{z}^t = \mathbf{A} \mathbf{s}^t \text{ mod q, for some } \mathbf{s} \text{ in } \mathbf{Z_q}^n \}$$

LWE-based Encryption

- System wide n x n matrix A with entries in Z_q
- Public key: LWE sample

$$(A, b^t = A s^t + e^t)$$

- Private key: small LWE secret s from error distribution
- Encryption: m in {0, 1}
 - generate two small vectors \mathbf{r} , \mathbf{x} with entries from noise distribution
 - ciphertext: C = (r A + x, <r, b> + x' + m q/2)
- Decryption: given ciphertext C = (c, d)
 - given s, compute <c, s> d ~ m q/2 + small error
 - · can easily recover m

Slide credit Frederik Vercauteren

LWE-based Encryption: Parameters

- estimate using Bounded Distance Decoding [Liu-Nguyen'13]
- 128-bit security (2128 basic ops):
 - dimension n = 256
 - prime q = 7681
 - parameter of Gaussian error distribution ~ 11 (st. dev. $11/\sqrt{2\pi}$)
- · public key: 104 Kbyte
- · ciphertext: 416 byte
- public key and ciphertext expansion can be reduced with ring version of LWE (structured A instead of random A)
 - · hardness related to problems in "ideal" lattices

Slide credit Frederik Vercauteren

Key Aspects of Lattice-based Systems

Pros

- · efficient and parallizable
 - · matrix-vector arithmetic, Fast-Fourier Transform for polynomial multiplication
- · worst-case to average-case reductions

Cons

- · difficult to find good sampling methods
- · difficult to assess exact security
- large keys

Slide credit: Christiane Peters

Multivariate Quadratic Equations

Public Key:

• system of quadratic polynomials $P : F_q^n \to F_q^m$

Private Key:

- affine transformations T : $F_q^m \rightarrow F_q^m$ (on output variables) and S: $F_q^n \to F_q^n$ (on input variables)

 • central system of quadratic polynomials $F: F_q^n \to F_q^m$ (easily
- invertible)

S and T hide the structure of F: P = ToFo S

Slide credit: Alan Szer

COMPUSEC - Computer Security

Protecting data at rest

- well established solutions for local encryption:
 Bitlocker, Truecrypt
- infrequently used in cloud
- Achilles heel is key management

45

COMPUSEC - Computer Security

Complex ecosystem developed over 40 years by thousands of people that has many weaknesses

- Errors at all levels leading to attacks (think
 - governments have privileged access to those weaknesses
- Continuous remote update needed
 - entity that controls updates is in charge
- Current defense technologies (firewall, anti-virus) not very strong
- cannot resist a motivated attacker
- Not designed to resist human factor attacks: coercion, bribery, blackmail
- Supply chain of software and hardware vulnerable and hard to defend
 - backdoors are hard to detect

40

COMPUSEC - Computer Security

- · Simplify to reduce attack surface
- · Secure local computation
 - · with threshold security
 - · Multi Party Computation
 - hardware support: TPM, SMART, Sancus, SGX,...
- · Secure and open implementations
- · Community driven open audit

Reconsider every stage Kleptography Crypto design Hardware/software design Hardware backdoors Hardware production Firmware/sw impl. Software backdoors Device assembly Adding/modifying hardware backdoors Device shipping Device configuration Configuration errors Device update Backdoor insertion

Predictions on the Next 40 Years of Public-Key Cryptography

- ?????????: Computers, communications, storage are all quantum and all classical cryptography disappears
- Highly unlikely: public-key cryptography will disappear completely
 everything online: symmetric cryptography could make a comeback for many applications (e.g. EMV, web security)
- Probable: within 10-20 years massive deployment of postquantum cryptography (hash-based signatures and lattice-based encryption)
- Probable: much more sophisticated protocols with distributed crypto and multi-party computation are more widely used
- Perhaps: RSA/DLOG/ECC stays around but with much larger key lengths

Long term security problem is restricted to confidentiality – one can always re-sign if compromise is suspected