MEASUREMENT-DEVICE-INDEPENDENT QUANTUM KEY DISTRIBUTION

Joshua A. Slater

Vienna Centre for Quantum Science & Technology University of Vienna, Austria Institute for Quantum Science & Technology University of Calgary, Canada

Institute for QUANTUM SCIENCE AND TECHNOLOGY at the University of Calgary

MEASUREMENT-DEVICE-INDEPENDENT QUANTUM KEY DISTRIBUTION

Joshua A. Slater

Vienna Centre for Quantum Science & Technology University of Vienna, Austria Institute for Quantum Science & Technology University of Calgary, Canada

Institute for QUANTUM SCIENCE AND TECHNOLOGY at the University of Calgary

OUTLINE

- Side-Channel Attacks
- Measurement-Device-Independent QKD
- Experimental Challenges
- Experiments (part I) First Generation
- Theoretical Studies
- Alternative Protocols
- Experiments (part II) Most Recent

QKD protects the channel from Eve's tampering

Prepare-and-Measure QKD Channel secured by correlations Sources & Measurements assumed secure

QKD protects the channel from Eve's tampering

Table 1. Summary of various quantum hacking attacks againstPrepare-acertain commercial and research QKD set-ups.

C Attack	Target component	Tested system	
Time shift ⁷⁵⁻⁷⁸	Detector	Commercial system	
SO Time information ⁷⁹	Detector	Research system	ure
Detector control ⁸⁰⁻⁸²	Detector	Commercial system	
Detector control ⁸³	Detector	Research system	
Detector dead time ⁸⁴	Detector	Research system	
Channel calibration ⁸⁵	Detector	Commercial system	
Phase remapping ⁸⁶	Phase modulator	Commercial system	
Faraday mirror ⁸⁷	Faraday mirror	Theory	
Wavelength ⁸⁸	Beamsplitter	Theory	
Phase information ⁸⁹	Source	Research system	
Device calibration ⁹⁰	Local oscillator	Research system	Lo, C

.o, Curty, Tamaki, Nat. Photon (2014)

Shifting arrival time of photon to increase knowledge of bit upon detection

V. Makarov et al PRA 74, 022313 (2006), Y. Zhan et al PRA 78, 042333 (2008),

APD Operation:

QKD SECURITY

Blinding & Faked States Eve Plug-and-play Eve Optical Bob' Alice' amplifier R Basis Basis Detection result Bit in Blinding laser Alice Channel Bob а '0'

Bob's Detectors only 'click' when Eve wants

Faked states sent by Eve		Clicks at Bob			
		V	-45°	н	+ 45°
1,702,067	V	1,693,799 99.51%	0	0	0
2,055,059	- 45 °	0	2,048,072 99.66%	0	0
2,620,099	н	0	0	2,614,918 99.80%	0
2,359,494	+ 45°	0	0	0	2,358,418

L. Lydersen et al, Nat. Photon. 4, 686 (2010), I. Gerhardt et al Nat. Comm. 2, 349 (2011)

 I_0

 $I_{\rm th}$

 I_1

 $I_{\rm th}$

 I_0

 $I_{\rm th}$

 I_1

 $I_{\rm th}$

t

APD Operation:

KD SECURITY

Blinding & Faked States Eve Plug-and-play Eve

- Controlling SN-SPD, Lydersen et al., NJP (2011)
- Controlling SN-SPD, Tanner et al., Opt Exp (2014)
- Blinding SD-SPD, Jiang et al., PRA (2013)

L. Lydersen et al, Nat. Photon. 4, 686 (2010), I. Gerhardt et al Nat. Comm. 2, 349 (2011)

I_{th}

 $I_{\rm th}$

Blinding

PRL 112, 070503 (2014) PHYSICAL REVIEW LETTERS

week ending 21 FEBRUARY 2014

Laser Damage Helps the Eavesdropper in Quantum Cryptography

Audun Nystad Bugge,¹ Sebastien Sauge,² Aina Mardhiyah M. Ghazali,³ Johannes Skaar,¹ Lars Lydersen,¹ and Vadim Makarov^{4,*}

"f. Catastrophic structure damage takes place the bonding wires melted off completely lost all photosensitivity, with the device becoming a resistor....

Later states of damage result in visible changes to the APD In the last stage of damage, the laser beam produces a hole''

Blinding

PRL 112, 070503 (2014) PHYSICAL REVIEW LETTERS

week ending 21 FEBRUARY 2014

Laser Damage Helps the Eavesdropper in Quantum Cryptography

Audun Nystad Bugge,¹ Sebastien Sauge,² Aina Mardhiyah M. Ghazali,³ Johannes Skaar,¹ Lars Lydersen,¹ and Vadim Makarov^{4,*}

"f. Catastrophic structure damage takes place the bonding wires melted off completely lost all photosensitivity, with the device becoming a resistor....

Later states of damage result in visible changes to the APD In the last stage of damage, the laser beam produces a hole''

I) Better Security Proofs? ... to deal with our imperfections?

Random Variation of Detector Efficiency: A Secure Countermeasure against Detector Blinding Attacks for Quantum Key Distribution

Charles Ci Wen Lim, Nino Walenta, Matthieu Legré, Nicolas Gisin and Hugo Zbinden

Quant-ph:1408.6398

If F(y_e, y) & not **η**, then Eve can be caught!

I) Better Security Proofs? ... to deal with our imperfections?

2) Better Devices? ... that can't be hacked?

I) Better Security Proofs? ... to deal with our imperfections?

2) Better Devices? ... that can't be hacked?

3) Better Protocols? ... immune to hacking?

I) Better Security Proofs? ... to deal with our imperfections?

2) Better Devices? ... that can't be hacked?

3) Better Protocols? ... immune to hacking?

Device-Independent (MDI) QKD?

.... immune to large class of hacks?

Measurement Device-Independent (MDI) QKD?

OUTLINE

- Side-Channel Attacks
- Measurement-Device-Independent QKD
- Experimental Challenges
- Experiments (part I) First Generation
- Theoretical Studies
- Alternative Protocols
- Experiments (part II) Most Recent

PHYSICAL REVIEW A

VOLUME 54, NUMBER 4

OCTOBER 1996

Quantum cryptographic network based on quantum memories

Eli Biham Computer Science Department, Technion, Haifa 32000, Israel

Bruno Huttner Group of Applied Physics, University of Geneva, CH-1211, Geneva 4, Switzerland

> Tal Mor Department of Physics, Technion, Haifa 32000, Israel (Received 4 March 1996)

Center Station

OLD IDEA

OLD IDEA

Time-Reversed EPR QKD (Biham, Hattner, Tor, PRA 1996)

NEW IMPORTANCE!

Side-Channel-Free QKD (Braunstein & Pirandola, PRL 130502 (2012))

Private Spaces, Remote State Preparation & Virtual channels

NEW IMPORTANCE!

Measurement-Device-Independent QKD (Lo, Curdy, Qi, PRL 130503 (2012))

2. PNS attack avoidable with Decoy States

 $P(n) = \mu^n e^{\mu} / n!$

NEW IMPORTANCE!

Measurement-Device-Independent QKD (Lo, Curdy, Qi, PRL 130503 (2012))

I. Distribution (Alice & Bob)

Attenuated Laser, Random intensity, Random BB84: $\{|0\rangle, |1\rangle, |+\rangle, |-\rangle\}$ Charlie: $|\psi - \rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$

Project each pair onto a Bell-State:

2. Reconciliation

Charlie announces $BSMs \rightarrow Alice \& Bob announce bases$

Keep bits when BSM successful & bases equal \rightarrow bit flip

3. Parameter Estimation 4. Privacy Amplification

$$S = Q_{11} \left(1 - h_2 \left(e_{11} \right) \right) - Q_{\mu\mu} f h_2 \left(e_{\mu\mu} \right)$$

- 2. Does not require high-efficiency detection
- 3. Doubles the Distance (as with EPR-QKD)

MDI-QKD

LETTER

A quantum access network

Bernd Fröhlich^{1,2}, James F. Dynes^{1,2}, Marco Lucamarini^{1,2}, Andrew W. Sharpe¹, Zhiliang Yuan^{1,2} & Andrew J. Shields^{1,2}

Why? Charlie (0)(0)R Alice **BSM** Bob 5. Networks Alice Bob R \bigcirc \mathfrak{D} b Quantum transmitter 1 Quantum **BSM** Upstream transmitter Quantum key Quantum Ψ₁ $1 \times N$ R Quantum transmitter N **BSM** David Eddie Candice

doi:10.1038/nature12493

MDI-QKD

LETTER

doi:10.1038/nature12493

A quantum access network

Bernd Fröhlich^{1,2}, James F. Dynes^{1,2}, Marco Lucamarini^{1,2}, Andrew W. Sharpe¹, Zhiliang Yuan^{1,2} & Andrew J. Shields^{1,2}

- 2. Does not require high-efficiency detection
- 3. Potential for Long Distance (as with EPR-QKD)
- 4. A step towards Quantum Repeaters
- 5. Untrusted, Quantum Access, Networking

OUTLINE

- Side-Channel Attacks
- Measurement-Device-Independent QKD
- Experimental Challenges
- Experiments (part I) First Generation
- Theoretical Studies
- Alternative Protocols
- Experiments (part II) Most Recent

CHALLENGES

Bell-State Measurement

with Linear Optics, 50%:

Different Z values: $|\psi \pm \rangle = \frac{1}{\sqrt{2}} (|01\rangle \pm |10\rangle)$

CHALLENGES

Bell-State Measurement $|\psi\rangle$ with Linear Optics, 50%:

Different Z values:

 $|\psi\pm\rangle = \frac{1}{\sqrt{2}} (|01\rangle\pm|10\rangle)$

Polarization:

Time-Bin:

H/V Basis - Z Basis Alice n State Bob n State P(BSM)

CHALLENGES

 $|\psi - \rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$ Poissonian statistics: $P(n) = \mu^n e^{\mu} / n!$

I/V Basis - Z Basis							
	Alice n	State	Bob n	State	P(BSM)		
	0		0		0		

CHALLENGES

 $|\psi - \rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$ Poissonian statistics: $P(n) = \mu^n e^{\mu} / n!$

H/V Basis - Z Basis Alice n State Bob n State P(BSM) 0 --- 0 --- 0 I H 0 --- 0

CHALLENGES

 $|\psi - \rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$ Poissonian statistics:

 $P(n) = \mu^n e^\mu / n!$

P(BSM)

()

()

1/2

State

Η

PBS

CHALLENGES

Bell-State Measurement

Maintaining Indistinguishability - Time, Polarization, Frequency

 ψ

 ψ

Z

BS

Also, qubit mode: extra polarization, or phase (interferometer)

CHALLENGES

Bell-State Measurement

Maintaining Indistinguishability - Time, Polarization, Frequency

 ψ

 ψ

R

BS

Also, qubit mode: extra polarization, or phase (interferometer)

BSM not demonstrated outside the lab (before MDI-QKD)

OUTLINE

- Side-Channel Attacks
- Measurement-Device-Independent QKD
- Experimental Challenges
- Experiments (part I) First Generation
- Theoretical Studies
- Alternative Protocols
- Experiments (part II) Most Recent

Calgary, Canada A. Rubenok, JAS, et al. PRL 111, 130501 (2013) P. Chan, JAS, et al. Opt Exp 22, 12716 (2014)

Parameter	Alice's value	Boh's value
	Theory variat	Dos 5 varae
$b^{z=0} = b^{z=1}$	$(7.12 \pm 0.98) \times 10^{-3}$	$(1.14 \pm 0.49) \times 10^{-3}$
$b^{x=-} = b^{x=+}$	$(5.45 \pm 0.37) \times 10^{-3}$	$(1.14 \pm 0.49) \times 10^{-3}$
$m^{z=0}$	0.9944 ± 0.0018	0.9967 ± 0.0008
$m^{z=1}$	0	0
$m^{x=+} = m^{x=-}$	0.4972 ± 0.011	0.5018 ± 0.0080
$\phi^{z=0} = \phi^{z=1} = \phi^{x=+}$ [rad]	0	0
$\phi^{x=-}$ [rad]	$\pi + (0.075 \pm 0.015)$	$\pi - (0.075 \pm 0.015)$

 $|\psi\rangle = \sqrt{m^{Z,X} + b^{Z,X}} |0\rangle + e^{i\phi_{Z,X}} \sqrt{1 - m^{Z,X} + b^{Z,X}} |1\rangle$

Hefei, China (Y. Liu, et al. PRL 111, 130502 (2013))

2 ns / 10 pm 85 ns time-bin qubits Decoy-States (0.5, 0.2, 0.1,0) 0.1 pm frequency precision10 ps time precisionRandom modulationsPhase-stabilized interferometers

Hefei, China (Y. Liu, et al. PRL 111, 130502 (2013))

Decoy-States (0.5, 0.2, 0.1,0)

Phase-stabilized interferometers

Rio de Janeiro, Brazil (T. F. da Silva et al., PRA 88, 052303 (2013))

Specifications cw laser, 1546 nm 1.5 ns / 650 MHz Polarization qubits Decoy-States (0.5, 0.1,0)

Rep I MHz Multiplexed - time / polarization sync

Toronto, Canada (Z. Tang et al., PRL 112, 190503 (2014))

Specifications cw laser, 1542 nm Phase randomized states 1.5 ns / 650 MHz Polarization qubits Decoy-States (0.3, 0.1,0.01)

$$e^{X} = 26.2\%$$

 $e^{Z} = 1.8$
 $S = 1e^{-8}$

EXPERIMENTS	Qubit	Features		
Calgary, Canada (A. Rubenok, JAS, et al. PRL 111, 130501 (2013))	time-bin	 real-world deployment 'active' stabilization optimized intensities 		
Hefei, China (Y. Liu, et al. PRL 111, 130502 (2013))	time-bin	 random modulation finite key analysis 		
Rio de Janeiro, Brazil (T. F. da Silva et al., PRA 88, 052303 (2013))	Polarization	- WDM multiplexed fiber		
Toronto, Canada (Z. Tang et al., PRL 112, 190503 (2014))	Polarization	 pre-set random modulation phase-randomized source finite key analysis optimized intensities 		

OUTLINE

- Side-Channel Attacks
- Measurement-Device-Independent QKD
- Experimental Challenges
- Experiments (part I) First Generation
- Theoretical Studies
- Alternative Protocols
- Experiments (part II) Most Recent

1) Adapted to Experimental Systems (P. Chan, JAS, et al. Opt Exp 22, 12716)

$$\left|\psi\right\rangle = \sqrt{m^{Z,X} + b^{Z,X}} \left|0\right\rangle + e^{i\phi_{Z,X}} \sqrt{1 - m^{Z,X} + b^{Z,X}} \left|1\right\rangle$$

1) Adapted to Experimental Systems (P. Chan, JAS, et al. Opt Exp 22, 12716)

$$\begin{split} |\psi\rangle &= \sqrt{m^{Z,X} + b^{Z,X}} |0\rangle + e^{i\phi_{Z,X}} \sqrt{1 - m^{Z,X} + b^{Z,X}}} |1\rangle_{\text{bb}} \xrightarrow{\text{Distance (km)}}_{10^{-2}} \underbrace{\text{Distance (km)}}_{150 \ 200 \ 250 \ 300 \ 350 \ 400} \\ \hline \text{Improvements}}_{\text{SSPDs} + \text{IM}} \\ \stackrel{\text{Improvements}}{\text{SSPDs}} \xrightarrow{\text{IM}}_{\text{SSPDs} + \text{IM}} \\ \stackrel{\text{Improvements}}{\text{SSPDs}} \xrightarrow{\text{IM}}_{\text{SSPDs} + \text{IM}} \\ \stackrel{\text{Improvements}}{\text{Improvements}} \xrightarrow{\text{SSPDs}}_{\text{SSPDs} + \text{IM}} \\ \stackrel{\text{Improvements}}{\text{Improvements}} \xrightarrow{\text{SSPDs}}_{\text{SSPDs} + \text{IM}} \\ \stackrel{\text{Improvements}}{\text{Improvements}} \xrightarrow{\text{SSPDs}}_{\text{Improvements}} \xrightarrow{\text{Improvements}} \xrightarrow{\text{SSPDs}}_{\text{Improvements}} \xrightarrow{\text{Improvements}} \xrightarrow{\text{Improvements}} \xrightarrow{\text{Improvements}} \xrightarrow{\text{SSPDs}}_{\text{Improvements}} \xrightarrow{\text{Improvements}} \xrightarrow{\text{Improvements}$$

IOP Institute of Physics DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

THEORETICAL STUDIES OF MDI-QKD

2) Examination of Imperfections Impact (F. Xu et al. NJP 15, 113007)

Examination of Rate-Limiting Devices (P. Chan, JAS, et al. Opt Exp 22, 12716)
 Examination of Imperfections Impact (F. Xu et al. NJP 15, 113007)
 Examination of Photon Number Distribution (Wang & Wang Sci. Rep. 04612)

Major Impact: Efficient Detection

Other Minor Impacts State preparation Favourable number distributions

Decoy-State Analyses & Finite-Key 10^{-2} 10^{-4} Key rate (per pulse) 10^{-6} 10^{-8} 10⁻¹⁰ 50 200 100 150 Standard fiber link (km) I) Asymptotic 2) F. Xu et al, PRA 052333 (2014), optimized 3) S.-H. Sun et al, PRA 052329 (2013), optimized 4) Z.-W.Yu et al, arxiv: 1309:5886,

5) X. Ma et al, PRA 052305 (2012), numeric

of Wang PRA 012320 (2012)

6) P. Chan, JAS, et al, Opt Exp (2014), optimization

2 (blue) - 2 decoys (0.0005, 0.01, 0.25) @ 50 km

Optimization:

Step I - intensities:

I) Asymptotic

2) F. Xu et al, PRA 052333 (2014), optimized

- 3) S.-H. Sun et al, PRA 052329 (2013), optimized
- 4) Z.-W.Yu et al, arxiv: 1309:5886,
- 5) X. Ma et al, PRA 052305 (2012), numeric
- 6) P. Chan, JAS, et al, Opt Exp (2014), optimization of Wang PRA 012320 (2012)

Optimization:

Step I - intensities: 2 (blue) - 2 decoys (0.0005, 0.01, 0.25) @ 50 km

Step 2 - Ratios: $P_{signal} = 0.58$ $P_{decoy} = 0.30$ $P_{vacuum} = 0.12$

 $P_{X|signal} = 0.03$ $P_{X|decoy} = 0.71$ $P_{X|vaccum} = 0.83$

6) P. Chan, JAS, et al, Opt Exp (2014), optimization of Wang PRA 012320 (2012)

Optimization:

Step I - intensities: 2 (blue) - 2 decoys (0.0005, 0.01, 0.25) @ 50 km

Step 2 - Ratios:

 $P_{signal} = 0.58$ $P_{decoy} = 0.30$ $P_{vacuum} = 0.12$

 $P_{X|signal} = 0.03$ $P_{X|decoy} = 0.71$ $P_{X|vaccum} = 0.83$

OUTLINE

- Side-Channel Attacks
- Measurement-Device-Independent QKD
- Experimental Challenges
- Experiments (part I) First Generation
- Theoretical Studies
- Alternative Protocols
- Experiments (part II) Most Recent

VARIATIONS OF MDI-QKD

Combined with Quantum Entanglement / Relay (F. Xu et al AIP 103, 061101 (2013))

VARIATIONS OF MDI-QKD

Combined with Quantum Entanglement / Relay (F. Xu et al AIP 103, 061101 (2013))

VARIATIONS OF MDI-QKD

Adaptive-BSM-MDI-QKD (K. Azuma, et al. arxiv: 1408.2884 (2014))

Multiplexing in Frequency

Poster on frequency multiplexed quantum memories for QKD (H. Krovi QCrypt 2014)

VARIATIONS OF MDI-QKD SARG-MDI-QKD (A. Mitzutani, et al. Sci Reports 05236 (2014))

(a) (b) (a) 10-4 D_{LD} $D_{\rm RD}$ Eve's MU D_0 **key rate** 10-8 $D_{L\bar{D}}$ $D_{R\bar{D}}$ SPDC QND QND Coherent 10-10 source 10-12 But poissonian statistics very bad 50 100 150 200 250 0 distance (km)

Some multi-photon emissions secure
VARIATIONS OF MDI-QKD

CHSH-MDI-QKD (K. Azuma, et al. arxiv: 1408.2884 (2014))

VARIATIONS OF MDI-QKD DI-QKD with Local Bell Tests

C. C. W. Lim, et al PRX 3, 031006 (2013)

$$S = 1 - \log_2 \left(1 + \frac{S}{4\eta} \sqrt{8 - S^2} \right) - 2h_2(e)$$

Note: Dependence on Loss

OUTLINE

- Side-Channel Attacks
- Measurement-Device-Independent QKD
- Experimental Challenges
- Experiments (part I) First Generation
- Theoretical Studies
- Alternative Protocols
- Experiments (part II) Most Recent

Towards Full Automation: Calgary, Canada (QCrypt 2013)

Charlie TCP/IP communication. Automatic time / polarization Continuous frequency monitor

Alice Exciting Graphs!

Full Automation: Hefei, China (Y.-L.Tang et al arxiv:1408.2330)

Field stabilization of indistinguishability

Charlie

SNSPD2

EPC SPAPD1

EPC SPAPD2

PBS

Deployed-Fiber

Deployed-Fiber

75 MHz rep rate 18.2 hours

7 bits/s

Efficient Bell-State Measurements Calgary, Canada (R.Valivarthi, JAS, et al., submitted)

Theory: $e^{Z} = 0\%$ Experiment: $e^{Z}(\psi^{+}) = 0.32 \pm 0.02\%$ t: $e^{Z}(\psi^{-}) = 0.32 \pm 0.02\%$ Theory: $e^{X} = 25\%$ Experiment: $e^{X}(\psi^{+}) = 26.92 \pm 0.11\%$ t: $e^{X}(\psi^{+}) = 26.64 \pm 0.10\%$

Charlie

Det1

Det2

PBS

PBS

⊐-₩> LD

Clock

Clock

AWG/FPGA

AWG/FPGA

Bo

THE CUTTING-EDGE OF MDI-QKD

PMBS

LD

Long Distance / High Loss Calgary, Canada (R. Valivarthi, JAS, et al., QCrypt Poster)

Long Distance / High Loss Hefei, China (Y.-L.Tang et al., arxiv:1407.8012)

75 MHz Rep-Rate

@ 200 km, 0.009 b/sec

THE CUTTING-EDGE OF MDI-QKD			
Long Distance / High Loss	Distance	Loss	Кеу
Hefei, China (YL. Tang et al., arxiv: 1407.8012)	200 km	40 dB	0.54 bit/min E
Calgary, Canada (R.Valivarthi et al., QCrypt 2014)	l km	60 dB	3.3 bit/min asymptotic
Geneva, Switzerland (B. Korzh et al., arxiv: 1407.7427)	307 km	52 dB	191 bit/min ɛ

MEASUREMENT-DEVICE-INDEPENDENT QUANTUM KEY DISTRIBUTION

Removes all detector side-channel attacks

Experimental demonstrations (real-world / lab, different encodings)

Potential for untrusted Quantum Access Networks

Potential for long-distance

Lots of theoretical & experimental work happening!

Thank you!