Efficient Secret Key Distillation over Quantum Channels

arXiv: 1307.1136

Joseph M. Renes*, David Sutter*, Frédéric Dupuis[†], Renato Renner*

*Institute for Theoretical Physics, ETH Zurich [†]Department of Computer Science, Aarhus University

QCrypt 2014, Paris

ETH zürich

- reliability: $\varphi_A^k \approx \varphi_B^k$
- ▶ secrecy: no information about φ_A^k, φ_B^k leaks to environment
- rate: $\frac{k}{n}$ as high as possible
- efficiency: computationally cheap to run the protocol
- additional ressources: no preshared key required

• reliability:
$$\varphi_A^k \approx \varphi_B^k$$

- ▶ secrecy: no information about φ_A^k, φ_B^k leaks to environment
- rate: $\frac{k}{n}$ as high as possible
- efficiency: computationally cheap to run the protocol
- additional ressources: no preshared key required

- important primitive in quantum cryptography
- final step in most standard QKD protocols is a SKD task

Results: Overview

Explicit SKD protocol that

- is reliable
- is secure
- achieves the private information
- for Pauli or erasure noise has a complexity O(n log n)
- does not need preshared key

Outline

- capacity achieving
- efficient encoding&decoding

► CSS codes ▶ high rates & efficient

• for U_1 , U_2 uniform $\underbrace{I(U_1 : Y_1 Y_2)}_{\leq I(W)} + \underbrace{I(U_2 : U_1 Y_1 Y_2)}_{\geq I(W)} = 2I(W)$

► for U_1 , U_2 uniform $\underbrace{I(U_1 : Y_1 Y_2)}_{\leq I(W)} + \underbrace{I(U_2 : U_1 Y_1 Y_2)}_{\geq I(W)} = 2 I(W)$

define *logical* channels

worse channel W_{-}

better channel W₊

► $I(W_-) + I(W_+) = 2I(W)$ with $I(W_-) \le I(W) \le I(W_+)$

- apply transformation recursively
- example n = 4
- (i) divide channels in 2 groups& apply transf. in pairs

(ii) repeat for each type of channel

• inputs \Leftrightarrow logical channels; e.g., U_3 is W_{+-}

logical outputs = all physical outputs & previous inputs

► Polarization Phenomenon (informal): As n → ∞ essentially all logical channels are either almost perfect or almost pure noise.

logical outputs = all physical outputs & previous inputs

► Polarization Phenomenon (informal): As n → ∞ essentially all logical channels are either almost perfect or almost pure noise.

• Polarization Phenomenon (formal): For every $\varepsilon \in (0, 1)$

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{i\in[n]:I(U_i:Y^nU^{i-1})\in(\varepsilon,1-\varepsilon)\right\}\right|=0$$

• fraction of good channels is = I(W) (= capacity of W)

- send messages over good channels
- freeze inputs to bad channels to 0
- ► O(n log n) CNOTs
 - logical outputs = all physical outputs & previous inputs
 - ▶ Polarization Phenomenon (informal): As $n \to \infty$ essentially all logical channels are either almost perfect or almost pure noise.
 - ▶ Polarization Phenomenon (formal): For every $\varepsilon \in (0, 1)$

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{i\in[n]:I\left(U_i:Y^nU^{i-1}\right)\in(\varepsilon,1-\varepsilon)\right\}\right|=0$$

• fraction of good channels is = I(W) (= capacity of W)

- send messages over good channels
- freeze inputs to bad channels to 0
- ► O(n log n) CNOTs

- decode sequentially using max. likelihood
- recursive structure makes ML efficient

 $-Y_4
ightarrow O(n \log n)$

• $p_{\rm err} = O(2^{-\sqrt{n}})$

logical outputs = all physical outputs & previous inputs

► Polarization Phenomenon (informal): As n → ∞ essentially all logical channels are either almost perfect or almost pure noise.

▶ Polarization Phenomenon (formal): For every $\varepsilon \in (0, 1)$

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{i\in[n]:I\left(U_i:Y^nU^{i-1}\right)\in(\varepsilon,1-\varepsilon)\right\}\right|=0$$

• fraction of good channels is = I(W) (= capacity of W)

Quantum polar codes

▶ Polarization occurs in Z (amplitude) and X (phase) basis

- ▶ Z and X bases \rightarrow send entanglement [Christandl&Winter'05]
- Shown to be applicable for several different information processing tasks [Dupuis-Guha-Renes-Renner-Wilde-...]

- Determine induced amplitude and phase channel
 - Q := indices good for amplitude & good for phase
 - ► *A* := indices good for amplitude & bad for phase
 - $\mathcal{P} :=$ indices bad for amplitude & good for phase
 - $\mathcal{E} :=$ indices bad for amplitude & bad for phase

- Determine induced amplitude and phase channel
 - Q := indices good for amplitude & good for phase
 - $\mathcal{A} :=$ indices good for amplitude & bad for phase
 - $\mathcal{P} :=$ indices bad for amplitude & good for phase
 - $\mathcal{E} :=$ indices bad for amplitude & bad for phase

amplitude channel

phase channel

Determine induced amplitude and phase channel

- Q := indices good for amplitude & good for phase
- $\mathcal{A} :=$ indices good for amplitude & bad for phase
- $\mathcal{P} :=$ indices bad for amplitude & good for phase
- $\mathcal{E} :=$ indices bad for amplitude & bad for phase

amplitude channel

phase channel

reversed phase channel

Determine induced amplitude and phase channel

- Q := indices good for amplitude & good for phase
- $\mathcal{A} :=$ indices good for amplitude & bad for phase
- $\mathcal{P} :=$ indices bad for amplitude & good for phase
- $\mathcal{E} :=$ indices bad for amplitude & bad for phase

Determine induced amplitude and phase channel

- Q := indices good for amplitude & good for phase
- $\mathcal{A} :=$ indices good for amplitude & bad for phase
- $\mathcal{P} :=$ indices bad for amplitude & good for phase
- $\blacktriangleright \ \mathcal{E} := indices \ bad \ for \ amplitude \ \& \ bad \ for \ phase$

Determine induced amplitude and phase channel

- Q := indices good for amplitude & good for phase
- $\mathcal{A} :=$ indices good for amplitude & bad for phase
- $\mathcal{P} :=$ indices bad for amplitude & good for phase
- $\mathcal{E} :=$ indices bad for amplitude & bad for phase

Entanglement Distillation ($\ell = 4, m = 2$)

▶ Amplitude IR: p_{err} (Z^{Aⁿ}|BⁿB^m_C) ≤ mε₁
 ▶ Phase IR: p_{err} (X^{Ā^m}|BⁿCⁿB_D) ≤ ε₂

Entanglement Distillation: Characteristics

Rate:
$$R := \frac{\# \text{ qubits at output}}{n} \ge I(A \land B)_{\psi}$$
Reliability: $\delta \left(|\phi\rangle_d^{\hat{A}\hat{B}}, \mathcal{F}(\Psi^{A^nB^nE^n}) \right) \le \sqrt{2\epsilon_2} + \sqrt{2m\epsilon_1}$
 $m = \# \text{ inner blocks}$
 $\ell = \# \text{ inputs per inner blocks}$
 $n = m\ell$ blocklength

Entanglement Distillation: Characteristics

• Rate:
$$R := \frac{\# \text{ qubits at output}}{n} \ge I(A \land B)_{\psi}$$

• Reliability: $\delta \left(|\phi\rangle_d^{\hat{A}\hat{B}}, \mathcal{F}(\Psi^{A^nB^nE^n}) \right) \le \sqrt{2\epsilon_2} + \sqrt{2m\epsilon_1}$
 \uparrow
max. entang-
led state from protocol $m = \# \text{ inner blocks}$
 $\ell = \# \text{ inputs per inner block}$
 $n = m\ell$ blocklength

Entanglement Distillation: Characteristics

Rate:
$$R := \frac{\# \text{ qubits at output}}{n} \ge I(A \land B)_{\psi}$$
Reliability: $\delta \left(|\phi\rangle_d^{\hat{A}\hat{B}}, \mathcal{F}(\Psi^{A^nB^nE^n}) \right) \le \sqrt{2\epsilon_2} + \sqrt{2m\epsilon_1}$
max. entang-output state
led state
from protocol
 $\ell = \# \text{ inner blocks}$
 $\ell = \# \text{ inputs per inner blocks}$
 $n = m\ell$ blocklength

Using Quantum Polar Codes:

•
$$\epsilon_1 = O\left(2^{-\sqrt{\ell}}\right)$$
 and $\epsilon_2 = O\left(\ell \, 2^{-\sqrt{m}}\right)$

► For Pauli and erasure noise the complexity of the scheme is O(n log n).

Efficient Encoding and Decoding using Polar Codes

- Inner layer: standard polar encoder
- Outer layer: multilevel polarization encoder

Efficient Encoding and Decoding using Polar Codes

 \mathcal{D}_A : Use the standard polar decoder [Arıkan'09]

 \mathcal{D}_P : Use the decoder for a classical concatenated polar coding scheme [DS-Renes-Dupuis-Renner'12]

Efficient secret-key distillation

- If Alice and Bob share a shield system S
- Entanglement distillation \rightarrow secret-key distillation
- Secrecy ensured via uncertainty principle

• Rate
$$R \ge H(Z^A|E) - H(Z^A|B)$$

- Computationally efficient for Pauli and erasure noise using polar codes O(n log n)
- No preshared secret key is needed

Efficient secret-key distillation

Any system not held by Eve that however cannot be used for amplitude IR by Alice and Bob

- ► If Alice and Bob share a *shield* system *S*
- Entanglement distillation \rightarrow secret-key distillation
- Secrecy ensured via uncertainty principle

• Rate
$$R \ge H(Z^A|E) - H(Z^A|B)$$

- Computationally efficient for Pauli and erasure noise using polar codes O(n log n)
- No preshared secret key is needed

Summary & Outlook

- Efficient protocol for entanglement distillation at (almost) optimal rate
- Useful for efficient SKD at private information
- Quantum communication at coherent information
 - efficient for Pauli and erasure channels
 - no entanglement assistance needed
- Can it be efficient for arbitrary noise?