

Quantum Attacks on Classical Proof Systems

The Hardness of Quantum Rewinding

Dominique Unruh University of Tartu

With Andris Ambainis, Ansis Rosmanis

Classical

Crypto

(Quick intro.)

Dominique Unruh

Quantum Attacks on Classical Proofs

Zero-knowledge proofs (of knowledge)

<u>Uses:</u> Proving honest behavior, drosophilia of crypto, ...

Towards efficient ZK: Sigma protocols

"Special soundness": Two different responses allow to compute witness

Proving soundness

Special soundness → We extract the witness → Correct proof implies knowledge of witness

Classical security easy.

Quantum!

But if adversary has a quantum computer?

Dominique Unruh

Quantum Attacks on Classical Proofs

Impossibility result

There is a sigma-protocol

- with special soundness
- that is not sound (Relative to some oracle.)

Consequence:

A classically secure sigma-protocol may be quantum insecure*

* See terms and conditions for oracle-separations

The "pick-one trick" (simplified)

- Given a set *S*
- can encode it as a quantum state $|\Psi\rangle$
- s.t. for any set P
- you find one $x_1 \in S \cap P$
- but not two $x_1, x_2 \in S$

Pick-one trick: Finding $x_1 \in S \cap P$

Grover's algorithm

- Create $|\Psi\rangle \coloneqq \sum_{x} |x\rangle$
- Repeatedly apply: $I - 2|\Psi\rangle\langle\Psi|$ and stuff.
- Get: $x \in P$

Picking x₁

- Create $|\Psi\rangle \coloneqq \sum_{x \in S} |x\rangle$
- Repeatedly apply: $I - 2|\Psi\rangle\langle\Psi|$ and stuff.
- Get: $x \in P \cap S$

Pick-one trick: Not finding $x_1, x_2 \in S$

- $x_1, x_2 \in S$ hard to find.
- Even with oracle for $I 2|\Psi\rangle\langle\Psi|$.
- Assuming *S* is a random set.

- Query complexity problem.
- Proved using Ambainis' "adversary method"

Breaking sigma-protocols

- Given a set *S*
- can encode it as a quantum state $|\Psi\rangle$
- s.t. for any set P
- you find one $x_1 \in S \cap P$
- but not two $x_1, x_2 \in S$

No quantum secure sigma protocols?

 No: under extra conditions, they are secure [Watrous 2006, Unruh 2012]

 But general security unlikely under same assumptions as classical

Other results

Same technique (pick-one trick) gives impossibilities for:

- Computationally-sound proofs
- Fiat-Shamir's NIZK proofs/signatures
- Fischlin's NIZK proofs
- Commitments

Open problems

• Can we do it without oracles? [Aaronson, Christiano 2012]?

• Under what conditions are sigma-protocols et al. secure?

• Alternative constructions that are secure?

I thank for your attention

ARCHIMEDES

Regional Development Fund Investing in your future

This research was supported by European Social Fund's **Doctoral Studies and** Internationalisation **Programme DoRa**

NIZK with random oracles

- NIZK consists of com,chal,resp
- Prover can't cheat:
 H is like a verifier
- Security-proof: Rewinding

<u>Fischlin</u>

Fix com

Try different chal, resp
until H(chal,resp)=xxx000
Proof := com,chal,resp

- Need to query several chal,resp
- Implies existence of witness

Attacking Fischlin

How does "one-pick trick" work?

- Grover: Quantum algorithm for searching
- Observation:
 - First step of Grover produces a state encoding the search space
- This state (plus modified Grover) implements "one-pick trick"
- Hard part: Prove "can't find two $x_1, x_2 \in S$ "