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Abstract. We present a new definition of computationally binding commitment schemes
in the quantum setting, which we call “collapse-binding”. The definition applies to string
commitments, composes in parallel, and works well with rewinding-based proofs. We give
simple constructions of collapse-binding commitments in the random oracle model, giving
evidence that they can be realized from hash functions like SHA-3. We evidence the usefulness
of our definition by constructing three-round statistical zero-knowledge quantum arguments
of knowledge for all NP languages.

We study the definition and construction of computationally binding string commitment schemes
in the quantum setting. A commitment scheme is a two-party protocol consisting of two phases,
the commit and the open phase. The goal of the commitment is to allow the sender to transmit
information related to a message m during the commit phase in such a way that the recipient
learns nothing about the message (hiding property). But at the same time, the sender cannot
change his mind later about the message (binding property). Later, in the open phase, the sender
reveals the message m and proves that this was indeed the message that he had in mind earlier.
We will focus on non-interactive classical commitments, that is, the commit and open phase
consists of a single classical message. However, the adversary who tries to break the binding or
hiding property will be a quantum-polynomial-time algorithm. At the first glance, it seems that
the definition of the binding property in this setting is straightforward; we just take the classical
definition but consider quantum adversaries instead of classical ones:

Definition 1 (Classical-style binding – informal) No quantum-polynomial-time algorithm
A can output, except with negligible probability, a commitment c (i.e., the message sent during
the commit phase) as well as two openings u, u′ that open c to two different messages m,m′.

Unfortunately, this definition turns out to be inadequate in the quantum setting. Ambainis,
Rosmanis, and Unruh [1] show the existence of a commitment scheme (relative to a special oracle)
such that: The commitment is classical-style binding. Yet there exists a quantum-polynomial-time
adversary A that outputs a commitment c, then expects a message m as input, and then provides
valid opening information for c and m. That is, the adversary can open the commitment c to
any message of his choosing, even if he learns that message only after committing. This is in
clear contradiction to the intuition of the binding property. How is this possible, as Definition 1
says that the adversary cannot produce two different openings for the same commitment? In
the construction from [1], the adversary has a quantum state |Ψ〉 that allows him to compute
one opening for a message of his choosing, however, this computation will destroy the state |Ψ〉.
Thus, the adversary cannot compute two openings simultaneously, hence the commitment is
classically-binding. But he can open the commitment to an arbitrary message once, which shows
that the commitment scheme is basically useless despite being classically-binding.1

1Note that for classical adversaries, the classical-binding property gives useful guarantees: If an adversary
can produce an opening for any message m using some classical algorithm, he can also produce two openings for
different messages m,m′ by running that algorithm twice.
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Prior definitions. A number of definitions occur in the literature that address the above problem.
The simplest definition (for bit commitments, i.e., m ∈ {0, 1}) is what we call the “sum-binding”
definition: For a given quantum-polynomial-time adversary, let p0 denote the probability that
the adversary commits and opens to m = 0, and let p1 denote the probability that the adversary
commits and opens to m = 1. Assume that the adversary learns whether he should open to 0 or
1 only after the commit phase. We call a scheme sum-binding if p0 + p1 ≤ 1 + negligible. This
definition circumvents the above problems, however, it is only meaningful for bit commitments.
A generalization to string commitments is the CDMS-binding property from [2]. However, that
definition is parametrized over a specific family of predicates that need to be chosen specific for
each application, and it is not clear whether the definition composes in parallel (i.e., if we commit
to m1 and m2, is this a binding commitment to (m1,m2)?) Also, it seems that CDMS-binding
commitments are difficult to use in a setting where quantum rewinding is used. For more details
and justification, see the full version [5]. Alternatively, perfectly binding commitments or UC
commitments can be used to circumvent the above problem. However, for constructing those, we
need considerably stronger assumptions, so a weaker definition that that is general and parallel
composes would be very useful.

Our contribution. We give a new definition for the computational-binding property for
commitment schemes, called “collapse-binding”. This definition is composable (several collapse-
binding commitments are also collapse-binding together), works well with quantum rewinding
(see below), does not conflict with statistical hiding (as perfectly-binding commitments would),
allows for short commitments (i.e., the commitment can be shorter than the committed message,
in contrast to perfectly-binding commitments, and to extractable commitments in the CRS
model). Basically, collapse-binding commitments seem to be in the quantum setting what
computationally-binding commitments are in the classical setting.

We show that collision-resistant hash functions are not sufficient for getting collapse-binding or
even just sum-binding commitments, at least when using standard constructions, and relative to an
oracle. We present a strengthening of collision-resistant hash functions, “collapsing hash functions”
that can serve as a drop-in replacement for collision-resistant hash functions. Using collapsing
hash functions, we show several standard constructions of commitments to be collapse-binding.

We conjecture that standard cryptographic hash functions such as SHA-3 [3] are collapsing
(and thus lead to collapse-binding commitments). We give evidence for this conjecture by proving
that the random oracle is a collapsing hash function.

We show that the definition of collapse-binding commitments is usable by extending the
construction of quantum proofs of knowledge from [4]. Their construction uses perfectly-binding
commitments (actually, strict-binding, which is slightly stronger) to get proofs of knowledge. We
show that when replacing the perfectly-binding commitments with collapse-binding ones, we
get statistical zero-knowledge quantum arguments of knowledge. In particular, this shows that
collapse-binding commitments work well together with rewinding.

Collapse-binding commitments. To explain the definition of collapse-binding commitments,
first consider a perfectly-binding commitment. That is, when an adversary A outputs a commit-
ment c, there is only one possible message mc that A can open c to. Hence, if the adversary A
outputs a superposition of messages that he can open c to, that superposition will necessarily
be in the state |mc〉. Hence, we can characterize perfectly-binding commitments by requiring:
when an adversary outputs a superposition of messages that he can open the commitment c to,
that superposition will necessarily be a single computational basis vector (i.e., no non-trivial
superposition).

To express this more formally, consider the circuit in Figure 1 (a). Here the adversary A
outputs a commitment c (classical message). Furthermore, he outputs three quantum registers

2



A B

A Vc B

A Vc B

A B
Vc

c ok

b/
M

/
S

/
U

A B

A Vc B

A Vc Mok B

A B
Vc

c ok

b/
M

/
S

/
U

Figure 1: Games from the definition of
collapse-binding commitments.

S, U , M . S contains his state. M is supposed to
contain a superposition of messages, U a superposi-
tion of corresponding opening informations. Then we
apply the measurement Vc. This measurement mea-
sures whether U,M contain matching opening infor-
mation/message. More formally, Vc measures whether
U,M is a superposition of states |u,m〉 such that u is
valid opening information for message m and commit-
ment c. Let ok = 1 if the measurement succeeds. Then
we feed the registers S,U,M back to the second part
B of the adversary. B outputs a classical bit b. As
discussed before, a commitment is perfectly-binding iff
for all adversaries A, the state of M after measuring
ok = 1 is a computational basis vector.

The state of a register is a computational basis
vector (or, synonymously: is in a collapsed state) iff
measuring that register in the computational basis does not change that state. Consider the
circuit in Figure 1 (b). Here we added a measurement Mok on M after Vc. Mok is a complete
measurement in the computational basis, but is executed only if ok = 1. Since Mok disturbs the
state of M iff that state is not a computational basis vector, we can rephrase the definition of
perfectly-binding commitments:

A commitment is perfectly-binding iff, for all computationally unlimited adversaries A,B,
Pr[b = 1] is equal in Figures 1 (a) and 1 (b) where b is the output (i.e., guess) of B.2

Now we are ready to weaken this characterization to get a computational binding property.
Basically, we require that the same holds for quantum-polynomial-time adversaries:

Definition 2 (Collapse-binding – informal) A commitment is collapse-binding iff, for all
quantum-polynomial-time adversaries A,B, Pr[b = 1] in Figure 1 (a) is negligibly close to Pr[b = 1]
in Figure 1 (b).

In other words, with a perfectly-binding commitment, the adversary cannot produce a superposi-
tion of different messages that are contained in the commitment. But with a collapse-binding
commitment, the adversary is forced to produce a state that looks like it is not a superposition of
different messages. For the purpose of computational security, this will often be as good.

For the other results (in particular constructions and evidence of the usability of the definition),
see [5]. Related work is also discussed there.
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2Our exposition above was not very rigorous, but it is easy to see that this is indeed an “if and only if”.
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