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A fully homomorphic encryption scheme is an encryption scheme with the property that any
computation on the plaintext can be performed by a party having access to the ciphertext only.
Here, we formally define and give schemes for quantum homomorphic encryption, which is the
encryption of quantum information such that quantum computations can be performed given the
ciphertext only. Our schemes allow for arbitrary Clifford group gates, but become inefficient for
circuits with large complexity, measured in terms of the non-Clifford portion of the circuit (we use
the “π/8” non-Clifford group gate, also known as the T-gate).

More specifically, two schemes are proposed: the first scheme has a decryption procedure whose
complexity scales with the square of the number of T-gates (compared with a trivial scheme in
which the complexity scales with the total number of gates); the second scheme uses a quantum
evaluation key of length given by a polynomial of degree exponential in the circuit’s T-gate depth,
yielding a homomorphic scheme for quantum circuits with constant T-depth. Both schemes build
on a classical fully homomorphic encryption scheme.

A further contribution of ours is to formally define the security of encryption schemes for quantum
messages: we define quantum indistinguishability under chosen plaintext attacks in both the public-
and private-key settings. In this context, we show the equivalence of several definitions.

Our schemes are the first of their kind that are secure under modern cryptographic definitions,
and can be seen as a quantum analogue of classical results establishing homomorphic encryption
for circuits with a limited number of multiplication gates. Historically, such results appeared as
precursors to the breakthrough result establishing classical fully homomorphic encryption.

I. INTRODUCTION

An encryption scheme is homomorphic over some set of circuits S if any circuit in S can be evaluated on
an encrypted input. That is, given an encryption of the message m, it is possible to produce a ciphertext that
decrypts to the output of the circuit C on input m, for any C ∈ S . In fully homomorphic encryption (FHE),
S is the set of all classical circuits. FHE was introduced in 1978 by Rivest, Adleman and Dertouzos [25],
but the existence of such a scheme was an open problem for over 30 years. Some early public-key encryption
schemes were homomorphic over the set of circuits consisting of only additions [19, 23] or over the set of
circuits consisting of only multiplications [15]. Several steps were made towards FHE, with schemes that
were homomorphic over increasingly large circuit classes, such as circuits containing additions and a single
multiplication [6], or of logarithmic depth [27], until finally in 2009, Gentry established a breakthrough result
by giving the first fully homomorphic encryption scheme [17]. Follow-up work showed that FHE could be
simplified [12], and based on standard assumptions, such as learning with errors [7]. The advent of FHE
has unleashed a series of far-reaching consequences, such as delegating computations in a cloud architecture,
and functional encryption [18].

A number of works have studied the secure delegation of quantum computation [1, 9–11, 16, 30] None
directly address the question of quantum homomorphic encryption, since they are interactive schemes, and
the work of the client is proportional to the size of the circuit being evaluated (and thus, they do not satisfy
the compactness requirement of FHE, even if we allow interaction). Non-interactive approaches are given
by [4], [26] and [29]. However, [4] and [26] are applicable to very restricted function families. Furthermore,
in the case of [4], security is given only in terms of cheat sensitivity, while both [26] and [29] only bound
the leakage of their encoding schemes and thus do not provide security according to standard cryptographic
definitions.

Recent work [31] examines the question of perfect security and correctness for quantum fully homomorphic
encryption (QFHE), concluding that the trivial scheme is optimal in this context. In light of this result, it
is natural to consider computational assumptions in achieving QFHE. Indeed, the question of computation-
ally secure QFHE remains an open problem. Such a scheme must satisfy three properties: 1) it must be
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computationally secure under some suitable security definition; 2) it must be compact — the complexity of
decryption should be independent of the complexity of the evaluated circuit; and 3) it must be homomorphic
for all quantum circuits. Our contribution makes progress towards this goal from two directions: we present
the first computationally secure scheme that is compact and homomorphic for a large class of quantum
circuits, satisfying (1) and (2) and making progress towards (3); and the first computationally secure scheme
that is “quasi-compact” (the complexity of decryption depends on the number of T-gates in the evaluated
circuit) and homomorphic for all quantum circuits in a standard universal gate set, satisfying (1) and (3)
and making progress towards (2).

A. Summary of Contributions and Techniques

We introduce schemes for quantum homomorphic encryption (QHE), the quantum version of classical ho-
momorphic encryption; we are thus interested in establishing functionality for the evaluation of quantum
circuits on encrypted quantum data. In terms of definitions, we contribute by giving the first definition of
quantum homomorphic encryption in the computational security setting, in the case of both public-key and
symmetric-key cryptosystems. As a consequence, we give the first formal definition (and scheme) for the
public-key encryption of quantum information, where security is given in terms of quantum indistinguishabil-
ity under chosen plaintext attacks—for which we show the equivalence of a number of definitions, including
security for multiple messages.

In terms of QHE schemes, we start by using straightforward techniques to construct a scheme that is
homomorphic for Clifford circuits. This can be seen as an analogue to a classical scheme that is homomorphic
for linear circuits (circuits performing only additions). While Clifford circuits are not universal for quantum
computation, this already yields a range of applications for quantum information processing, including
encoding and decoding into stabilizer codes. Our quantum public-key encryption scheme is a hybrid of a
classical public-key fully homomorphic encryption scheme and the quantum one-time pad [2]. Intuitively,
the scheme works by encrypting the quantum register with a quantum one-time pad, and then encrypting
the one-time pad encryption keys with a classical public-key FHE scheme. Since Clifford circuits conjugate
Pauli operators to Pauli operators, any Clifford circuit can be directly applied to the encrypted quantum
register; the homomorphic property of the classical encryption scheme is used to update the encryption key.
Of course, we specify that the classical FHE scheme should be secure against quantum adversaries. By using,
e.g., the scheme from [7], we get security based on the learning with errors (LWE) assumption [24]; this has
been equated with worst-case hardness of “short vector problems” on arbitrary lattices [22], which is widely
believed to be a quantum-safe (or “post-quantum”) assumption.

For universal quantum computations, we must be able to evaluate a non-Clifford gate, for which we choose
the “T” gate (also known as “R” or “π/8” gate). Applying the above principle we run into trouble, since
TXaZb = XaZa⊕bPaT. That is, conditioned on the quantum one-time pad encryption key a, b ∈ {0, 1},
the output picks up an undesirable non-Pauli error. Our main contribution is to present two schemes,
EPR and AUX, that deal with this situation in two different ways:

EPR: The main idea of EPR is to use entangled quantum registers to enable corrections within the circuit at
the time of decryption. This scheme is homomorphic (and efficient) for any quantum circuit, however,
it fails to meet a requirement for fully homomorphic encryption called compactness, which requires that
the complexity of the decryption procedure be independent of the evaluated circuit. More specifically,
the complexity of the decryption procedure for EPR scales with the square of the number of T-gates.
This gives an advantage over the trivial scheme whenever the number of T-gates in the evaluated circuit
is less than the squareroot of the number of gates. (The trivial scheme consists of appending to the
ciphertext a description of the circuit to be evaluated, and specifying that it should be applied as part
of the decryption procedure.)

AUX: Compared to EPR, the scheme AUX takes a more proactive approach to performing the correction
required for a T-gate: to do this, it uses a number of auxiliary qubits that are given as part of the
evaluation key. Intuitively, these auxiliary qubits encode the required corrections. In order to ensure
universality, a large number of possible corrections must be available — the length of the evaluation key
is thus given by a polynomial of degree exponential in the circuit’s T-gate depth, yielding a homomorphic
scheme that is efficient for quantum circuits with constant T-depth.
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The two main schemes are incomparable. The scheme EPR becomes less compact (and therefore less inter-
esting, since it approaches the trivial scheme), as the number of T-gates increases, while the scheme AUX
becomes inefficient (extremely rapidly) as the depth of T-gates increases.

Our results can be viewed as a quantum analogue of precursory results to classical FHE, which established
schemes with the homomorphic property for circuits with a limited number of multiplications. One difference
is that, while these schemes started with the very modest goal of just a single multiplication (the addition
operation being “easy”), we have already allowed for at the very least a constant number, and, depending
on the circuit, up to a polynomial number of “hard” operations, namely of T-gates.

Our schemes use the existence of classical FHE, although at the expense of a slightly more complicated ex-
position, a classical scheme that is homomorphic only for linear circuits would suffice. We see the relationship
between our schemes and classical FHE as a strength of our result, via the following interpretation: classical
FHE is sufficient to enable QHE for a large family of circuits, and perhaps by taking greater advantage of
the fully homomorphic property of the classical scheme in some as yet unknown way, our ideas might be
extended to larger classes of quantum circuits.

An additional contribution of ours is conceptual: in the context of quantum circuits, it had been known for
some time now that the non-Clifford part of a quantum computation is the “difficult” one (this phenomena
appears, e.g. in the context of quantum simulations [20], fault-tolerant quantum computation [8] and quantum
secure function evaluation [5, 13, 14]). This has motivated a series of theoretical work seeking to optimize
quantum circuits in terms of their T-gate complexity [21, 28]. In particular, Ref. [3] recently proposed T-
depth as a cost function, the idea being to count the number of T-layers in a quantum circuit and optimize
over this parameter. Our contribution adds to this understanding, showing that, in the context of quantum
homomorphic encryption, the main challenge is to evaluate non-Clifford gates.
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