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Abstract—The purpose of reconciliation, one of classical 

aspects of quantum key distribution (QKD) protocol, is to 

mitigate errors after the distribution of quantum information 

over a quantum channel. In this work, a rate-adaptive method is 

proposed by means of a channel coding scheme where specific 

low-density parity-check (LDPC) codes are adapted in the 

Slepian-Wolf coding system. In order to estimate QBER, this 

method utilizes the properties of a maximum likelihood estimator 

based on the syndrome information instead of using the 

traditional key sampling. Evidently, numerical results confirm an 

improvement in the achievable secret key throughput in the 

current state-of-the-art QKD system. 

I. INTRODUCTION 

Quantum key distribution (QKD) was first proposed in 
1984 [1]. It is one of the quantum information processing 
technologies which employs properties of quantum mechanics 
to guarantee the secure key exchange for cryptographic 
purposes. Since the first publication of QKD prototype in 1992 
[2], the QKD protocol has been developed into a competitive 
industry with commercial QKD products [3−5]. However, its 
applicability is still obstructed by the low key rates, which 
depend on both the detection facilitates of the quantum state at 
the optical hardware and the efficiency of purely classical 
information processing, known as QKD post-processing. In 
fact, the critical step of the post-processing is key 
reconciliation. For this reason, one promising way to increase 
the secret key rates is the invention of the highly efficient 
reconciliation protocol. 

Previously, the most widely used reconciliation protocol, 
such as the well-known Cascade [6], has applied the interactive 
error correction based on binary searching. Although it is a 
simple method with proven efficiency, its speed is 
fundamentally limited by the network latency in the high 
interactivity that is not suitable for the high-speed QKD 
applications. Several applications for coding schemes have 
been proposed in [7−10]. These methods require the waste of 
using sample keys in order to estimate quantum bit error rate 
(QBER), and then to optimize their coding rate. Furthermore, 
there is an interactive reconciliation based on LDPC codes that 
works without a priori estimation of QBER, called Blind 

reconciliation [11]. It commonly uses the incremental 
redundancy with a hybrid automatic repeat request (HARQ) 
scheme by requiring round-trip communications until the 
feedback of successful decoding is declared. In [12] the 
analysis of a rate-adaptive reconciliation protocol has been 
presented by considering the effect of information leakage. Its 
results can increase the amount of a distillable secret key, but 
the design of the specific code has not been mentioned for the 
practical method.  

The goal of this work is to propose a rate-adaptive 
reconciliation using LDPC codes to achieve higher system 
efficiency. Puncturing and shortening techniques are adapted to 
optimize coding rates in the lower bound of Slepian-Wolf 
coding where the cross-over probability distribution obviously 
corresponds to the various error rates in the QKD system. That 
is accomplished according to the estimated QBER, which is 
purely obtained from the LDPC code’s syndromes by using the 
maximum-likelihood (ML) estimator. Its objective is to skip 
the step of traditional key sampling, and to get the longer secret 
key length after the QKD post-processing. Eventually, it 
impacts significantly on the achievable secret key generation 
rate responding to the high-speed QKD applications. 

II. SLEPIAN-WOLF CODING AND ITS APPLICATION TO 

RECONCILIATION 

Slepian-Wolf theorem deals with the lossless compression 
of two correlated sources, known as source coding with side 
information [13]. It is the main contribution for solving the key 
reconciliation problem based on the channel coding scheme as 
illustrated in Fig. 1. In this scheme, Alice and Bob have sifted 
keys modeled by binary random variables X and Y respectively, 
and it can be described by following two major steps: 

1) Encoding: Alice encodes X and communicates the 

resulting stream |M| to Bob over the public classical channel. 
2) Decoding: Then, Y and |M| are both fed into the channel 

decoder. Finally, Bob has the reconciled keys that will 
eventually become X'. It should be noted that the minimum 
information needed by Bob is under the condition of the 
Slepian-Wolf lower bound as RS ≥ H(X|Y). 



The objective of this scheme is to transform X and Y into a 
pair of fully correlated variables, where the Pr[X'=X] is equal 
to one. Since the communications of |M| are sent over the 
public classical channel, eavesdropper (Eve) can obtain the 
information of the secret keys whenever this channel is 
insecure. Therefore, its efficiency must depend on the leakage 
of reconciliation |M| that corresponds to the compression rate 
RS. 

Generally, the channel coding scheme can be applied to the 
Slepian-Wolf system for various applications such as 
distributed source coding for wireless sensor networks and 
multimedia applications. In fact, the Slepian-Wolf coding is 
closely related to the channel coding. For this reason, X and Y 
can be viewed as the input and the output over GF(2) of a 
binary symmetric channel (BSC) respectively. Let C be a linear 
block code which has a parity check matrix H of size M × N. In 
the Slepian-Wolf scheme, the syndrome S can be calculated by 
compression of main information X

N
, where S = X

N
H

T
. 

Correspondingly in Slepian-Wolf coding, the compression rate 

RS is the rate of syndrome denoted as .M
N

 It is equivalent to the 

channel coding rate (RC) of linear code C, where RC is .
N

MN  

Therefore, the relationship between Slepian-Wolf compression 
rate and channel coding rate can be expressed as 

 RS RC. (1)

For an efficient reconciliation, the channel coding rate RC 
must be optimized to the Slepian-Wolf lower bound. Then, it 
can be rewritten as 

  RC ≥ H(X|Y) (2) 

                                                 ≥ H(e),  

where e is the cross-over probability distribution among X and 
Y. In the case of a QKD system, e is equivalent to QBER which 
indicates the joint probability distribution among correlated 
information from Alice, and Bob, as well as Eve.  

III. RATE-ADAPTIVE RECONCILIATION WITH LDPC CODES 

BASED ON SLEPIAN-WOLF SYSTEM 

In this section, a rate-adaptive reconciliation with the 
maximum-likelihood (ML) estimator is presented by means of 
a channel coding scheme where irregular LDPC codes are 
adapted for the Slepian-Wolf coding system. LDPC codes [14] 
are binary linear block code which can be described by a sparse 
(low-density) parity-check matrix H. Let H has a dimension    
(n – k) × n, where n is the block length, and k is the number of 
information bits. It allows to adapt the coding rate by 

puncturing the p symbols, and shortening the s symbols, which 
are denoted by C(n – p – s, k – s). The proportion of punctured 
and shortened symbols is d = p + s.  

 The proposed method can be constructed adaptively on its 
rate by using the Slepian-Wolf coding scheme as illustrated in 
Fig. 2. It is formed and described in three steps as:  

Step 1) Syndrome encoding: Alice first calculates her 
syndrome SX with a high code rate Rmax (p = d, s = 0), and sends 
it to Bob over the public classical authenticated channel. 

Step 2) QBER estimation: At Bob's side, SY is also 
calculated by Rmax. Then, the cross-over probability e of the 
correlated sources (i.e., QBER of the QKD system) is 
computed using the ML estimator from syndrome matching 
Sdiff [15−16]. This can be defined as the binomial distribution of 
q(e) given by 
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where dc is the number of ones per row of parity check matrix 
H. Then, the ML estimator for e with respect to Sdiff is the 
inverse function of (3) as 
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, and Sdiff = SX  SY.  

After this step, the knowledge of e can be utilized to 
optimize the channel coding rate RC(optimal), which is 
constrained with the density evolution threshold [17]. If 
RC(optimal) < Rmax, they then return to Step 1 in order to vary a 
number of p and s symbols closer to the Slepian-Wolf lower 
bound in 

       1 |C

n k p
R optimal H X Y

n s p

 
  

 
             (5) 

          H e    

where H(e) is the binary entropy function of QBER. 

 Step 3) Syndrome decoding: Bob decodes his sequences Y, 
which is constructed from the corresponding p and s symbols 
in (5). The advantage of syndrome decoding is to determine 
whether LDPC decoder is a success or a failure.                             
By convention, this method is successfully concluded when 
Bob can produce his new syndrome (SXꞋ) that matches the 
syndrome received from Alice (SXꞋ = SX), where Pr(Xꞌ = X) 
equals to one. Otherwise, the feedback of decoding failure is 
announced for re-estimation of QBER by returning to Step 2. 

 
 

Fig. 1. Reconciliation as Slepian-Wolf coding scheme 

 
 Fig. 2. Rate-adaptive reconciliation as a Slepian-Wolf coding scheme. 



 

IV. NUMERICAL RESULTS AND DISCUSSION 

Fig. 3 presents the mean of estimated bit error rate e 
(estimated QBER) considered by the high code rate Rmax = 0.78 
(modulated by d = 2 × 10

4
) of three LDPC codes from short to 

long block lengths, N = 2 × 10
3
, 2 × 10

4
, and 2 × 10

5
 bits. As 

illustrated in Fig. 3, the performance of the ML estimator is 
interpreted as that limitations for different block lengths           
N = 2 × 10

3
, 2 × 10

4
, and 2 × 10

5
 bits are achieved approximately 

with QBER  [0, 0.06], [0, 0.08], and [0, 0.11] respectively. 
Consequently, the efficient estimation of the LDPC codes with 
block length N = 2 × 10

5
 can cover the whole range of QKD 

(QBER: 1% – 11%) that is suitable for the rate-adaptive 
reconciliation method. 

Next, the secret key rate S is evaluated in the view of the 
real inherent parameter in BB84 QKD systems [18], defined by 
 

                    exp  S p q r ,       (6) 

 

where pexp is the total detection rate for the events when 
photons are sent from Alice to Bob, q is the protocol efficiency, 
and r is the secure secret key. The expression for r can be 
defined in terms of only the simple entropic quantities by 

 ( | ) ( | )  r H X Z f H X Y  (7) 

where f is the parameter of reconciliation efficiency defined by 
the ratio of disclosed information during the reconciliation step 
(leakrecon) and the limit of Slepian-Wolf bound H(X|Y), 
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In the perfect reconciliation scheme, f is equal to one, and the 
maximum QBER acceptable to guarantee the security for any 
QKD system is 11%, which obtains a positive value of r. 

In Fig. 4 and 5, the results are calculated with the real 
inherent factors of the single photon source and detection for 
BB84 QKD protocol. This significantly ensures the system 
practicality, when the reconciliation schemes are considered, 
especially in the case of high-speed QKD devices. As 
illustrated in Fig. 4 and 5, the proposed rate-adaptive LDPC 

codes (blue line) uses a mother code's rate RC = 0.7 (modulated 
by d = 2 × 10

4 
between Rmin = 0.67 and Rmax = 0.78). It achieves 

the secret key rate (Fig. 4) and throughput (Fig. 5) closer to the 
theoretical limit on the perfect reconciliation (black line) than 
that of Cascade (red line), and the rate-compatible 
reconciliation with estimated QBER by wasting 10% of the 
traditional key sampling such as LDPC (purple line) and BCH 
codes [9] (green line). The advantage of the proposed rate-
adaptive method significantly impacts the achievable secret 
key generation over the longest distance for the high QKD 
throughput applications such as real-time video conferences. 
However, the computation and communication times are also 
the main argument for reconciliation improvement in case of a 
practical realization. In the future work, the rate-adaptive 
methods with low complexity would be proposed to implement 
as the software integrated in the commercial QKD devices. 

 

 
 

Fig. 3. Estimated bit error rate e by the ML estimator as 

a function of observed QBER. 
 

 

Fig. 4. Secret key rate S as a function of QBER. This simulation is 

calculated by  = 0.2 dB/km losses in optical fiber, a detection efficiency 

of  = 0.1, a dark counts probability of pd = 10-5, and q = 0.5. 

 

 
 

Fig. 5. Secret key throughput as a function of distance. This simulation is 

calculated by 1 GHz clock rate of the source over  = 0.2 dB/km, 

 = 0.1, pd = 10-5, and q = 0.5. 
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