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GENERAL BACKGROUND

Quantum key distribution (QKD) allows for uncondi-
tionally secure communication between two parties (Alice
and Bob). A recent breakthrough in the theory of QKD is
the treatment of finite-key scenarios, pioneered by Ren-
ner and collaborators (see [1], for example). This has
made QKD theory practically relevant, since the asymp-
totic regime associated with infinitely many exchanged
quantum signals is often an insu�cient description of ac-
tual experiments. In practice, Alice and Bob have limited
time and/or dim light sources that limit the number of
photons they can exchange. For example, in satellite-
based QKD where, say, Bob is on the satellite and Alice
is on the ground, the time allotted for exchanging quan-
tum signals corresponds to the time for the satellite to
pass overhead Alice’s laboratory on the ground.

Finite-key analysis attempts to rigorously establish
the security of finite-size keys extracted from finite raw
data. A systematic framework for such analysis was de-
veloped by Tomamichel et al. [2] involving the smooth
entropy formalism. This framework was later extended
to a decoy-state protocol by Lim et al. [3]. An alterna-
tive framework was developed by Hayashi and collabora-
tors [4, 5]. Other extensions of the finite-key framework
include the treatment of device-independent protocols by
Curty et al. [6] and Lim et al. [7], and continuous-variable
protocols by Furrer et al. [8] and Leverrier [9]. The frame-
work used in the aforementioned works, relying on some
fairly technical results,1 represents the current state-of-
the-art in the level of mathematical rigor for QKD secu-
rity proofs. These theoretical advances have led to exper-
imental implementations with finite-key analysis. Some
examples of such experiments include Refs. [10–12].

One can argue that all real QKD implementations are
of finite size. It is therefore of utmost importance to
fully understand the subtleties of finite-size e↵ects. We
point out that this understanding is required not only for
theoretical satisfaction but also for the correct calculation
of practically relevant quantities such as the key rate or
the noise tolerance of a QKD protocol.

1
These results include the uncertainty principle for smooth en-

tropies and the operational meanings of these entropies.

SIFTING PROBLEMS

General situation

In this work, we address some finite-size e↵ects that
seem to have remained unnoticed so far. We analyze
some subtleties that occur in the sifting2 stage of QKD.
Namely, we point out a discrepancy between the assump-
tions that enter into security proofs and the actual sifting
protocol used in several works on finite-key analysis. Our
calculations suggest that this discrepancy might be ex-
ploited by the eavesdropper, and hence if not fixed, might
lead to a security vulnerability.
At the same time, we see no reason to believe that this

discrepancy cannot be eliminated. We believe that once
this gap is closed, the theoretical framework developed
in the aforementioned works is valid and contains the
relevant ideas.
In the meantime, our work suggests that there is an

open area of research that needs to be addressed: how
to link sifting protocols to the statistical assumptions
needed for security proofs.
The particular sifting scheme that we call into ques-

tion, which we call iterative sifting, involves an itera-
tive procedure where Alice and Bob communicate their
measurement choices after each completed round until a
quota is met. This iterative sifting procedure was part
of theoretical protocols [2, 3, 6, 7] and has found experi-
mental implementation [10].
Ultimately the issue is as follows. Typical QKD proto-

cols involve randomly choosing some rounds to be used
for parameter estimation (PE) (i.e. testing for the pres-
ence of an eavesdropper Eve) and other rounds for key
generation (KG). Naturally, if Eve knows ahead of time
whether a round will be used for PE, i.e., if Eve knows
ahead of time which of the rounds form the sample for
testing for an eavesdropper’s presence, then she can ad-
just her attack appropriately and security is compro-
mised. Hence a central assumption in the QKD security
analysis is that Eve has no knowledge about the sample.

2
Sifting is the process where Alice and Bob announce their mea-

surement bases and discard some data, e.g., if the measurement

bases disagree.
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Contribution: Identified problems

We show that this assumption, that Eve has no knowl-
edge about the sample, is violated for iterative sifting.
To be more precise, the iterative sifting scheme has two
problems which, to our knowledge, have been neither ad-
dressed nor noted in the literature:

1. Non-uniform sampling : The sampling probability,
due to which the sampled bits and the encoding
basis are chosen, is not uniform.3 In other words,
there is an a priori bias: Eve knows ahead of time
that some rounds are more likely to end up in the
sample than others.

2. Basis information leak : Alice and Bob’s public
communication about their previous basis choices
(which happens before the quantum communica-
tion is over) allows Eve to update her knowledge
about which of the upcoming bits end up in the
sample. As a consequence, the quantum informa-
tion that passes through the channel thereafter will
be correlated to this knowledge of Eve.

It is conceivable that these two problems become smaller
as the size of the exchanged data increases. This would
remain to be shown and quantified. More importantly,
however, the protocols in question are designed to be
secure for all finite key lengths. In the light of these two
problems, the security analysis of iterative sifting in the
literature is incomplete. This is not a purely theoretical
objection but a practically very relevant issue.

To illustrate these two problems and to show their
potential harm to the security of a QKD protocol, we
present some simple intercept-resend attack strategies on
iterative sifting and calculate the expected error rates
they cause:

1. We show that non-uniform sampling can be ex-
ploited using a fixed non-adaptive strategy, with
error rates as low as ⇡ 22.8%.

2. Eve can exploit the basis information leak using an
adaptive attack strategy that conditions the basis
used for the attack on the classical data that Alice
and Bob exchanged previously. In this case, error
rates as low as ⇡ 16.3% are possible.

1 & 2. An attack strategy simultaneously exploiting both
problems achieves expected error rates of ⇡ 15.8%.

3
In general, the sampling probability (which decides which of the

bits are chosen as test bits) is distinguished from the probabil-

ity distribution which decides in which basis the information is

encrypted. In iterative sifting, however, the two coincide.

These numbers are well-below the typical 25% value for
intercept-resend attacks [13]. We also show that the two
identified problems are in fact two independent problems
that appear concurrently in iterated sifting but which can
occur separately in general.

Contribution: Suggested solution

There are two ways to address these problems. One
way is to investigate whether the security analysis of the
QKD protocols involving iterative sifting can be modi-
fied such that the two problems are addressed and the
security of the protocol is proved, but perhaps with
more pessimistic key rates than originally thought. In
other words, one could leave the protocol unchanged but
change its analysis. The second way is to find clear math-
ematical formulations of the assumptions in the analysis
that are violated by these two problems. This allows one
to investigate candidate protocols that could substitute
for iterative sifting without violating these assumptions.
In other words, the second way is to leave the assump-
tions of the security analysis unchanged but to change the
protocol which is supposed to satisfy these assumptions.
We choose to address the problems in the second way.

We present a candidate for a protocol that avoids the
two problems, and support our candidate by some exam-
ple calculations. More generally, we present two formal
mathematical criteria that can be checked for a proto-
col in order to guarantee that the usual security analysis
employed in the literature is valid. These criteria are
expressed in terms of a state ⇢ANBN⇥N which is associ-
ated with a sifting protocol. It is the quantum-quantum-
classical state that the protocol would output if all the
measurements of the protocol were skipped and the qubit
systems kept in their state instead. Then AN and BN

are Alice’s and Bob’s sifted qubit systems, and ⇥N is a
public register containing their basis choice and sample
information. Informally stated, the two criteria are:

1. The sampling probability encoded in the register
⇥N is uniform over all samples of the appropriate
size. If this is guaranteed, then there is no non-
uniform sampling.

2. Alice’s and Bob’s quantum information is uncorre-
lated to the basis choice and sample information,
i.e. the according systems are in a product state,
⇢ANBN⇥N = ⇢ANBN ⌦ ⇢⇥N . If this is guaranteed,
then there is no basis information leak.

We show that these two criteria are su�cient in the sense
that the relevant statistical inequality needed for the pa-
rameter estimation analysis can be derived from these
two assumptions. Although the state ⇢ANBN⇥N is only
fully known if Eve’s attack strategy is known, the two
criteria can be checked independently of Eve’s actions if
the sifting protocol is properly modeled.
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CONCLUSION

In conclusion, we have shown that there is a gap be-
tween the physical protocol used for finite-key sifting and
the security analysis in the literature and, furthermore,
that this gap can be exploited by an eavesdropper. We
believe that this observation will lead eventually to a
more complete framework for finite-key analysis. In the
sense that a framework is needed to address the issues
we raised, our work opens up an area for research.

We advocate that in future QKD protocols and their
analysis, the sifting process is no longer only assumed
to satisfy the necessary conditions for parameter estima-
tion but that the sifting is explicitly modeled and proved
to satisfy these conditions. The su�cient formal criteria
that we found can serve as a guiding light in this under-
taking.
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A central assumption in quantum key distribution (QKD) security analysis is that Eve has no
knowledge about which rounds will be used for parameter estimation or for key distillation. However,
we show that this assumption is violated for a common implementation of QKD that we call iterative
sifting, which involves an iterative procedure of communicating measurement choices of completed
rounds until a quota is met. We show that iterated sifting leads to two problems. Firstly, some
rounds are more likely to be key rounds than others. This bias allows Eve to choose an attack
strategy that attempts to read out the key when this is less likely to be detected. Secondly, the
public communication of past measurement choices changes this bias round by round, which allows
Eve to gradually update her attack strategy to further reduce the likelihood of being detected.

We analyze these two previously unnoticed problems, present attack strategies that exploit them,
calculate their error rates and find that the two problems are independent. We propose a simple
correction to recover the security of the protocol whereby Alice and Bob announce their basis
choices only after the quantum communication is completed. More generally, we present two formal
mathematical criteria for a sifting protocol that ensure that these two problems are avoided and that
the parameter estimation leads to correct conclusions. These may be guiding lights in the design
of future protocols and in the development of a rigorous formal QKD analysis, which has neglected
sifting-related problems so far.
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INTRODUCTION

Quantum key distribution (QKD) allows for unconditionally secure communication between two parties (Alice and
Bob). A recent breakthrough in the theory of QKD is the treatment of finite-key scenarios, pioneered by Renner and
collaborators (see [1], for example). This has made QKD theory practically relevant, since the asymptotic regime
associated with infinitely many exchanged quantum signals is often an insu�cient description of actual experiments.
In practice, Alice and Bob have limited time and/or dim light sources that limit the number of photons they can
exchange. For example, in satellite-based QKD where, say, Bob is on the satellite and Alice is on the ground, the time
allotted for exchanging quantum signals corresponds to the time for the satellite to pass overhead Alice’s laboratory
on the ground.

Finite-key analysis attempts to rigorously establish the security of finite-size keys extracted from finite raw data.
A systematic framework for such analysis was developed by Tomamichel et al. [2] involving the smooth entropy
formalism. This framework was later extended to a decoy-state protocol by Lim et al. [3]. An alternative framework
was developed by Hayashi and collaborators [4, 5]. Other extensions of the finite-key framework include the treatment
of device-independent protocols by Curty et al. [6] and Lim et al. [7], and continuous-variable protocols by Furrer et
al. [8] and Leverrier [9]. The framework used in the aforementioned works, relying on some fairly technical results,1

represents the current state-of-the-art in the level of mathematical rigor for QKD security proofs. These theoretical
advances have led to experimental implementations with finite-key analysis. Some examples of such experiments
include Refs. [10–12].

One can argue that all real QKD implementations are of finite size. It is therefore of utmost importance to fully
understand the subtleties of finite-size e↵ects. In this work, we point out a subtlety that occurs in the sifting2 stage
of QKD, which was not recognized previously. Namely, we point out a discrepancy between the assumptions that
enter the theoretical treatment of the sifted data and the actual sifting protocol used in several works on finite-key
analysis. Our calculations suggest that this discrepancy might be exploited by the eavesdropper, and hence if not
fixed, might lead to a security vulnerability. At the same time, we emphasize that we see no reason to believe that
this discrepancy cannot be eliminated. We believe that once this gap is closed, the theoretical framework developed
in the aforementioned works is valid and contains all the relevant ideas.

The particular sifting scheme that we call into question, which we call iterative sifting, involves an iterative procedure
where Alice and Bob communicate their measurement choices after each completed round until a quota is met. This
iterative sifting procedure was part of theoretical protocols [2, 3, 6, 7] and has found experimental implementations
[10].

Ultimately the issue is as follows. Typical QKD protocols involve randomly choosing some rounds to be used for
parameter estimation (PE) (i.e. testing for the presence of an eavesdropper Eve) and other rounds for key generation
(KG). Naturally, if Eve knows ahead of time whether a round will be used for PE, i.e. if Eve knows ahead of time which
of the rounds form the sample for testing for an eavesdropper’s presence, then she can adjust her attack appropriately
and security is compromised. Hence a central assumption in the QKD security analysis is that Eve has no knowledge
about the sample. We show that this assumption is violated for iterative sifting. On the other hand, we propose an
alternative sifting scheme that may fix the problem.

To be more precise, the iterative sifting scheme has two problems which, to our knowledge, have been neither
addressed nor noted in the literature:

• Non-uniform sampling : The sampling probability, due to which the key bits and the encoding basis are chosen,
is not uniform.3 In other words, there is an a priori bias: Eve knows ahead of time that some rounds are more
likely to end up in the sample than others.

• Basis information leak : Alice and Bob’s public communication about their previous basis choices (which happens
before the quantum communication is over) allows Eve to update her knowledge about which of the upcoming
bits end up in the sample. As a consequence, the quantum information that passes the channel thereafter will
be correlated to this knowledge of Eve.

It is conceivable that these two problems become smaller as the size of the exchanged data increases. This would
remain to be shown. More importantly, however, the protocols in question are designed to be secure for finite key
lengths. In the light of these two problems, their analysis does currently not account for these finite-size e↵ects. This
is not a purely theoretical objection but a practically very relevant issue.

1

These results include the uncertainty principle for smooth entropies and the operational meanings of these entropies.

2

Sifting is the process where Alice and Bob announce their measurement bases and discard some data, e.g., if the measurement bases

disagree.

3

In general, the sampling probability (which decides over which of the bits are chosen as test bits) is distinguished from the probability

distribution which decides in which basis the information is encrypted. In iterative sifting, however, the two coincide.
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There are two ways to address these problems. The first way would be to investigate whether the security analysis
of the QKD protocols involving iterated sifting can be modified such that the two problems are addressed and the
security of the protocol is proved. In other words, the first way would be to leave the protocol unchanged but to change
the assumptions on which the security analysis is based. The second way is to find clear mathematical formulations
of the assumptions in the analysis that are violated by these two problems. This allows to investigate candidate
protocols that could substitute iterative sifting without violating these assumptions. In other words, the second way
is to leave the assumptions of the security analysis unchanged but to change the protocol which is supposed to satisfy
these assumptions.

We choose to address the problem in the second way. We find that the two mentioned problems are in fact two
independent problems that appear concurrently in iterated sifting but which can occur separately in general. We
show how these problems open up the possibility of successful attacks by an eavesdropper. We present a candidate for
a protocol that avoids the two problems, and support our candidate by some example calculations. More generally,
we present two formal mathematical criteria that can be checked for a protocol in order to guarantee that the usual
security analysis employed in the literature is valid. These criteria are expressed in terms of a state ⇢

A

N

B

N

⇥

N which
is associated with a sifting protocol. It is the quantum-quantum-classical state that the protocol would output if
all the measurements of the protocol were skipped and the qubit systems kept in their state instead. Then AN and
BN are Alice’s and Bob’s sifted qubit systems, and ⇥N is a public register containing their basis choice and sample
information. Informally stated, the two criteria are:

• The sampling probability encoded in the register ⇥N is uniform over all samples of the appropriate size. If this
is guaranteed, then there is no non-uniform sampling.

• Alice’s and Bob’s quantum information is uncorrelated to the basis choice and sample information, i.e. the
according systems are in a product state, ⇢

A

N

B

N

⇥

N = ⇢
A

N

B

N ⌦ ⇢
⇥

N . If this is guaranteed, then there is no
basis information leak.

We show that these two criteria are su�cient in the sense that the relevant statistical inequality of the parameter
estimation analysis can be derived from these two assumptions. Although the state ⇢

A

N

B

N

⇥

N is only fully known if
Eve’s attack strategy is known, the two criteria can be checked independently of Eve’s actions if the sifting protocol
is properly modeled. We therefore advocate that in future protocol designs, the sifting process is modeled explicitly.
The two criteria can then help as a guideline.

I. WHAT EXACTLY IS THE PROBLEMATIC SCHEME?

A typical QKD protocol consists of the following subroutines [2]:

(i) Preparation, distribution, measurement and sifting, which we collectively refer to as “sifting”,

(ii) Parameter estimation,

(iii) Error correction,

(iv) Privacy amplification.

What we discuss in this paper refers entirely to the subroutine (i) and (ii), whereas subroutines (iii) and (iv) are not
of our concern. We refer to subroutine (i) collectively as “sifting”. Even though the word sifting usually only refers
to the process of discarding part of the data acquired in the measurements, we refer to the preparation, distribution,
measurement and sifting together as “sifting”, because the way in which these processes are linked in our protocol of
interest make it hard to separate the sifting process from the other three processes.

Our focus in this article is on a particular protocol for (i), which we call iterated sifting. This protocol is problematic,
but to fully understand why, one needs to see how the output of the iterated sifting protocol is processed in the
subsequent subroutine (ii), the parameter estimation. The typical analysis of the parameter estimation is false if
the parameter estimation is preceded by iterative sifting. This is why we will occasionally refer to the parameter
estimation in Sections II and III and discuss it in more detail in Section IV.

A. Description of the iterative sifting protocol

In this section, we will have a closer look at the sifting protocol in question, which we call the iterative sifting
protocol. It has found slightly di↵erent formulations in the literature, where the di↵erences lie mostly in the choice
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of the wording and in whether it is realized as a prepare-and-measure protocol [2, 3, 6, 10] or as an entanglement-
based protocol [7]. These details are irrelevant for the problems that we describe. In order to fix notation and to
have a clearly formulated version of the iterated sifting protocol at hand, we write down a version of the protocol in
Protocol 1. Its formulation and notation is close to the one described in [2], with the main di↵erence that we choose
an entanglement-based protocol instead of a prepare-and-measure protocol. This will have the advantage that the
formal analysis in Section IV is easier to formulate, but a prepare-and-measure based protocol would otherwise be
equally valid to demonstrate our points.

Iterative Sifting

Protocol Parameters: n, k 2 N
+

and p

x

, p

z

2 [0, 1] with p

x

+ p

z

= 1.

Output: For N = n+ k, the outputs are:

Alice: N -bit string (s
i

)N
i=1

2 {0, 1}N (measurement outcomes, sifted),

Bob: N -bit string (t
i

)N
i=1

2 {0, 1}N (measurement outcomes, sifted),

public: N -bit string (#
i

)N
i=1

2 {0, 1}N with
P

i

#

i

= k (basis choices, sifted), where 0 means X-basis and 1 means Z-basis.

Number of rounds: Stochastic number M , determined by reaching the termination condition (TC) after Step 5 of the loop.

The protocol

Loop phase: Steps 1 to 5 are iterated roundwise (round index r = 1, 2, . . .) until the TC after Step 5 is reached. Starting with
round r = 1, Alice and Bob do the following:

Step 1: (Preparation): Alice prepares a qubit pair in a maximally entangled state.

Step 2: (Channel use): Alice uses the quantum channel to send one share of the qubit pair to Bob.

Step 3: (Random bit generation): Alice and Bob each (independently) generate a random classical bit a
r

and b

r

, respectively,
where 0 is generated with probability p

x

and 1 is generated with probability p

z

.

Step 4: (Measurement): Alice measures her share in the X-basis (if a
r

= 0) or in the Z-basis (if a
r

= 1), and stores the
outcome in a classical bit y

r

. Likewise, Bob measures his share in the X-basis (if b
r

= 0) or in the Z

0-basis (if
b

r

= 1), and stores the outcome in a classical bit y0
r

.

Step 5: (Interim Report): Alice and Bob communicate their basis choice a

r

and b

r

over a public authenticated channel.
Then they determine the sets

X (r) = {j 2 {1, . . . , r} | a
j

= b

j

= 0} ,
Z(r) = {j 2 {1, . . . , r} | a

j

= b

j

= 1}

TC: If the condition (X (r) � n and Z(r) � k) is reached, Alice and Bob set m := r and proceed with Step 6. Otherwise,
they increment r by one and repeat from Step 1.

Final phase: The following steps are performed in a single run:

Step 6: (Random Discarding): Alice and Bob choose a subset X ✓ X (m) of size k at random, i.e. each subset of size k is
equally likely to be chosen. Analogously, they choose a subset Z ✓ Z(m) of size k at random. Then they discard
the bits a

r

, b
r

, y
r

and y

0
r

for which r /2 X [ Z.

Step 7: (Order-preserving relabeling): Let r

i

be the i-th element of X [ Z. Then Alice determines (s
i

)N
i=1

2 {0, 1}N , Bob
determines (t

i

)N
i=1

2 {0, 1}N and together they determine (c
i

)N
i=1

2 {0, 1}N , where for every i 2 {1, . . . , N},

s

i

= y

r

i

, t

i

= y

0
r

i

, #

i

= a

r

i

(= b

r

i

) .

Step 8: (Output): Alice locally outputs (s
i

)N
i=1

, Bob locally outputs (t
i

)N
i=1

and they publicly output (#
i

)N
i=1

.

Protocol 1: The iterative sifting protocol.

In the protocol, Alice and Bob iteratively prepares qubit pairs in a maximally entangled state (Step 1) and sends
one half of the pair to Bob (Step 2). Then, Alice and Bob each measure their half of the qubit with respect to a basis
a
i

, b
i

2 {0, 1}, respectively, where 0 stands for the X-basis and 1 stands for the Z-basis (Steps 3 and 4). Thereby,
0 (X) is chosen with probability p

x

, and 1 (Z) is chosen with probability p
z

, which are parameters of the protocol.
The important and problematic part of the protocol are Step 5 and the subsequent check of the termination condition
(TC): After each measurement, Alice and Bob communicate their basis choice over an authenticated classical channel.
With this information at hand, they then check whether the termination condition is satisfied: If for at least n of the
qubit pairs they had so far, they both measured in the X-basis, and for at least k of them, they both measured in
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the Z-basis, the termination condition is satisfied and they enter the final phase of the protocol by continuing with
Step 6. These quota n and k are parameters of the protocol. If the condition is not met, they repeat the Steps 1
to 5 (which we call the loop phase of the protocol) until they meet this condition. Because of this iteration, whose
termination condition depends on the course of the protocol up to that point, we call it the iterative sifting protocol.

After the loop phase of the protocol, in which the whole data is generated, Alice and Bob enter the final phase of
the protocol, in which this data is processed. This processing consists of discarding data of rounds in which Alice and
Bob measured in di↵erent bases, as well as randomly discarding a surplus of data for rounds where both measured
in the same basis, where a “surplus” refers to having more than n (k) rounds in which both measured in the X (Z)
basis, respectively. This discarding of surplus is done to simplify the analysis of the protocol, which is easier if the
number of bits where both measured in the X (Z) basis is fixed to a number n (k). Since after the loop phase, Alice
and Bob can end up with more bits measured in this same basis, they throw away surplus at random.

As we will see in Section II, the problematic components of the protocol are the interim report (Step 5) and
the termination condition (TC). The introduction of a termination condition leads to the problem of non-uniform
sampling (Section II B), and the communication in Step 5 leads to the problem that we call basis information leak
(Section IIC).

Without going into details at this point, we point out that the problem of non-uniform sampling, which comes
along with the introduction of a termination condition, arises because of the following convention that is made in the
context of iterated sifting.

Convention: QKD schemes that use the iterated sifting protocol (Protocol 1) as a subroutine for sifting make the
following convention for the parameter estimation subroutine: Bits s

i

, t
i

that result from measuring in the X-basis
(#

i

= 0) are raw key bits, whereas bits s
i

, t
i

that result from measuring in the Z-basis (#
i

= 1) are test bits.

This convention means that no additional randomness is injected in the parameter estimation step to decide on
which bits are used for the correlation test. The randomness for this sampling comes entirely from the probability
distribution p

x

, p
z

(Step 3), together with the termination condition (TC) and the random discarding (Step 6). It is
the combination of this convention and the termination condition which is problematic.

What are potential reasons for choosing iterative sifting as the sifting subroutine of a QKD protocol? What speaks
for iterated sifting is the fact that the loop phase never runs longer than necessary to achieve the quota n for the raw
key bits and the quota k for the test bits. This makes iterated sifting a promising candidate for a sifting routine that
is e�cient in the sense that it delivers many raw key and test bits per total number of uses of the quantum channel.
In fact, schemes that use iterated sifting usually set the probabilities p

x

and p
z

, which we have left as free parameters,
to values that optimize this ratio, namely [2, 7, 10]

p
x

=
1

1 +
q

k

n

, p
z

= 1� p
x

. (1)

This e�ciency, in turn, means that iterated sifting is a promising candidate for a subroutine of a QKD protocol with a
high expected key rate, i.e. a protocol with a high number of secret key bits that are generated per use of the quantum
channel. The expected key rate being the most important e�ciency parameter of a QKD protocol may explain the
popularity of iterated sifting in the literature.

B. Remarks on probability calculations for iterative sifting

In Section II, we will calculate the probabilities of certain outputs of Protocol 1. For example, in Section II B 1, we
will calculate the probability that Protocol 1 with parameters n = 1, k = 2 outputs the string # = (#

i

)3
i=1

= (1, 1, 0).
Since the output of the protocol is probabilistic, the output string becomes a random variable. We denote random
variables by capital letters and their values by lower case letters. For example, the random variable for the output
string # is denoted by ⇥, and the probability of the output string to have a certain value # is P [⇥ = #]. For strings in
# = (#

i

)N
i=1

2 {0, 1}N , we write (#
i

)N
i=1

= #
1

#
2

. . . ,#
N

instead of (#
i

)N
i=1

= (#
1

,#
2

, . . . ,#
N

), i.e. we omit the brackets
and commas. For example, we write 110 2 {0, 1}3 instead of (1, 1, 0) 2 {0, 1}3, so the probability that we calculate in
Section II B 1 is P [⇥ = 110]. Other random variables that we consider include the random variable A

1

(B
1

) of Alice’s
(Bob’s) first basis choice a

1

(b
1

) or the random variable M of the number m of total rounds performed in the loop
phase of the protocol.

To simplify the calculations, it is convenient to introduce the following terminology. For a round r in the loop
phase of Protocol 1, we say that r is an X-agreement if a

r

= b
r

= 0, r is a Z-agreement if a
r

= b
r

= 1 and r is a
disagreement if a

r

6= b
r

. We denote by N
x

the random variable of the number of X-agreements, and analogously, N
z

and N
d

are the random variables of the number of Z-agreements disagreements in the loop phase, respectively.
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For calculations with random variables like ⇥, A
1

, B
1

, M , N
x

, N
z

or N
d

, the sample space of the relevant underlying
probability space is the set of all possible courses of Protocol 1. This set is hard to model, as it contains not only all
possible strings (a

r

)
r

, (b
r

)
r

, (y
r

)
r

and (y0
r

)
r

of the loop phase (which can be arbitrarily long) but also a record of the
choice of the subsets X and Z in the random discarding during the final phase. It is, however, not necessary for our
calculations to have the underlying sample space explicitly written out. In order to avoid unnecessarily complicating
things, we therefore only deal with the relevant events, random variables and their probability mass functions directly,
assuming that the reader understands what probability space they are meant to be defined on.

We write events as logical statements of the random variables, e.g. ⇥ = 110 ^ N
x

� 2 is the event in which the
protocol runs with more than two X-agreements and produces the output # = 110, and its probability is given by
P [⇥ = 110^N

x

� 2]. In cases where all involved random variables have fixed values, we occasionally write expressions
in terms of probability mass functions instead of in terms of probability weights of events, e.g. we write

P
⇥N

x

N

z

N

d

(#, n
x

, n
z

, n
d

) := P [⇥ = #, N
x

= n
x

, N
z

= n
z

, N
d

= n
d

] . (2)

In cases with inequalities, it is however shorter to use the event notation, e.g.

P [A
1

6= B
1

] = P
A

1

B

1

(0, 1) + P
A

1

B

1

(1, 0) . (3)

We will use whatever notation we find more appropriate in each case.

II. WHAT ARE THE PROBLEMS?

A. The origin of the problems: The link between sifting and parameter estimation

As mentioned at the beginning of Section I, the first two subroutines of a QKD protocol are the sifting and the
subsequent parameter estimation. As we will describe in more detail in Section IV, protocols that use iterated sifting
as their sifting subroutine (and hence are problematic) use a protocol for parameter estimation which uses the bits
that result from measurements in the Z-basis for the correlation test and which outputs the bits that come from
measurements in the X-basis as raw keys (c.f. the Convention in Section I). To make clear what we are talking about,
we have written out such a protocol in Protocol 2.

Protocol 2 basically does the following. Alice and Bob start with the strings (s
i

)N
i=1

, (t
i

)N
i=1

and (#
i

)N
i=1

that they
got from sifting. Then, in a first step, they communicate the test bits. The test bits are those bits s

i

, t
i

that resulted
from measurements in the Z-basis, i.e. the bits s

i

, t
i

with i such that #
i

= 1. Then, they determine the size of the
fraction of the test bits that are anticorrelated between Alice and Bob, i.e. they determine the test bit error rate. If
it is higher than a certain protocol parameter q

tol

2 [0, 1], they abort. Otherwise, they output the raw keys, which
are the bits s

i

, t
i

that result from measurements in the X-basis, i.e. those s
i

, t
i

with i for which #
i

= 0.
The idea behind the parameter estimation is the following: If the correlation test passes, then the likelihood that

Eve knows much about the raw key is su�ciently low. The exact statement of this is subtle, and involves more
details than are necessary for our purposes. We refer to [2] for more details. Here, what is important is that this
estimate of Eve’s knowledge is done via estimating another probability that we call the tail probability p

tail

(µ), where
for µ 2 [0, 1], p

tail

(µ) is given by

p
tail

(µ) = P [⇤
key

� ⇤
test

+ µ | ⇤
test

 q
tol

] . (4)

Here, ⇤
test

is the random variable of the test bit error rate �
test

determined in Protocol 2. The random variable ⇤
key

is less easy to understand with the background we have developed this far. We will give a precise formal definition of
this random variable in Section IV. At this point here, we give an informal intuition on ⇤

key

instead.
Consider Protocol 1, but with the following modification: Instead of measuring in the X-basis when a

r

= 0 (b
r

= 0),
Alice and Bob measure in the Z-basis, no matter which value the bit a

r

(b
r

) has. This way, the measurement choice
bits a

r

and b
r

are the same as in Protocol 1, but the measurement outcome bits are di↵erent. Instead of calling them
s
r

and t
r

, let them be denoted by z
r

and z0
r

, since they are all measured in the Z-basis. For this modified protocol,
let ⇤

key

be the random variable of the quantity

�
key

=
1

n

NX
i=1

(1� #
i

)(z
i

� z0
i

) . (5)
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Parameter Estimation

Protocol Parameters: n, k 2 N
+

, p
x

, p

z

2 [0, 1] with p

x

+ p

z

= 1 and q

tol

2 [0, 1].

Input: For N = n+ k, the inputs are:

Alice: N -bit string (s
i

)N
i=1

2 {0, 1}N (measurement outcomes, sifted),

Bob: N -bit string (t
i

)N
i=1

2 {0, 1}N (measurement outcomes, sifted),

public: N -bit string (#
i

)N
i=1

2 {0, 1}N with
P

i

#

i

= k (basis choices, sifted), where 0 means X-basis and 1 means Z-basis.

Output: Either no output (if the protocol aborts in Step 2) or:

Alice: n-bit string (x
j

)n
j=1

2 {0, 1}n (raw key),

Bob: n-bit string (x0
j

)n
j=1

2 {0, 1}n (raw key).

The protocol

Step 1: (Test bit communication): Alice and Bob communicate their test bits, i.e. the bits s
i

and t

i

with i for which #

i

= 1.

Step 2: (Correlation test): Alice and Bob determine the test bit error rate

�

test

:=
1
k

NX

i=1

#

i

(s
i

� t

i

) ,

where � denotes addition modulo 2, and do the correlation test : If �
test

 q

tol

, they continue the protocol and move
on to Step 3. If �

test

> q

tol

, they abort.

Step 3: (Raw key output): Let i
j

be the j-th element of {i 2 {1, . . . , N} | #
i

= 0}. Then Alice outputs the n-bit string (x
j

)n
j=1

and Bob outputs the n-bit string (x0
j

)n
j=1

, where

x

j

= s

i

j

, x

0
j

= t

i

j

.

Protocol 2: The parameter estimation protocol.

Note that while the bits z
i

and z0
i

for i with #
i

= 0 are di↵erent from the bits s
i

, t
i

of Protocol 1, the bits z
i

and z0
i

for i with #
i

= 1 are the same as the bits s
i

and t
i

in Protocol 1. Hence, the quantity

�
test

:=
1

k

NX
i=1

#
i

(s
i

� t
i

) (6)

is the same as the quantity �
key

as

�
test

:=
1

k

NX
i=1

#
i

(z
i

� z0
i

) . (7)

Therefore, assume that we run Protocol 1 and then determine �
test

as part of the parameter estimation, Protocol 2.
Then, the validity of (8) tells us the following: Given that correlation test is passed (⇤

test

 q
tol

), we know what the
probability would be that ⇤

key

� ⇤
test

+ µ if we had run the modified protocol (in which everything is measured in
Z). The relevance of this knowledge about the random variable ⇤

key

of this hypothetical protocol is that it allows to
make statements about H✏

min

(X|E), where X is the raw key output of the parameter estimation, Protocol 2, for the
output of Protocol 1 (which has actually been performed) as its input. The connection between (8) and H✏

min

(X|E)
is made by virtue of an uncertainty relation for smooth entropies [2, 13], and a statement about the extractability of
a secure key from the raw key can then be made by employing the Quantum Leftover Hash Lemma [1, 2, 14]. Hence,
the validity of (8), which connects parameters determined in the actual protocol with parameters of a hypothetical
protocol, means that passing the correlation test really tells us something about the extractability of a secure key
from the raw key output of the parameter estimation.

Specifically, the tail probability analysis aims at proving that [2]

p
tail

(µ) 
exp

⇣
�2kn

N

k

k+1

µ2

⌘
p
pass

, (8)

where

p
pass

= P [⇤
test

� q
tol

] (9)
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is the probability that the correlation test passes. The derivation of (8) is done using a large deviation bound due to
Serfling [15]. For this bound to be correctly applied, two assumptions must be satisfied:

(A1) The sampling probability is uniform,

(A2) The basis choice register is uncorrelated to Alice’s and Bob’s qubits before measuring.

Assumption (A1) can be expressed as

P
⇥

(#) = P
⇥

(#0) for all #,#0 2 {0, 1}N with
NX
i=1

#
i

=
NX
i=1

#0
i

= k . (10)

It states that the probability of a subset of the qubits to be test bits (i.e. to be the sample) is equally high for all
subsets of size k. We can state this assumption by saying that the sampling probability, i.e. the probability of picking
a subset of the qubits as a sample, is uniform over the set

{0, 1}N
k

:=

(
(#

i

)N
i=1

2 {0, 1}N
�����

NX
i=1

#
i

= k

)
. (11)

Therefore, we call it the uniform sampling assumption. We point out that this is an assumption about the input of
Protocol 2, i.e. an assumption about the output of the sifting protocol. Assumption (A2) will be easy to be stated
once we have established the framework in which we will do the formal tail probability analysis in Section IV. We
will not go into the details of this assumption here. We will give an intuitive picture of (A2) in Section IIC and treat
it formally in Section IV, where we derive (8) from Assumptions (A1) and (A2). Again, however, what is important
about (A2) is that it is not an assumption about the parameter estimation protocol but about the sifting protocol.
Hence, although violations of the two assumptions happen in the sifting subroutine of QKD protocols, their e↵ects
lie in the failure of the estimate of p

tail

via the parameter estimation subroutine.

The two problems with iterative sifting lie in its violation of these two assumptions: Protocol 1 violates both (A1)
and (A2). For easy reference, we give these two violations some name. We say that a violation of Assumption (A1)
leads to the problem of non-uniform sampling, and that the violation of Assumption (A2) leads to the problem of
basis information leak.

B. Non-uniform sampling

1. Iterative sifting leads to non-uniform sampling

To show that iterative sifting leads to non-uniform sampling, we calculate the sampling probabilities for some
example parameters k, n 2 N

+

as functions of the probabilities p
x

and p
z

. While non-uniform sampling already arises
in the case of the smallest possible parameters k = n = 1, the results are even more interesting in cases where k 6= n.
Hence, we consider the iterative sifting protocol (Protocol 1) with n = 1, k = 2 and arbitrary p

x

, p
z

2 [0, 1] with
p
x

+ p
z

= 1. Let ⇥ denote the random variable of the string # = (#
i

)3
i=1

= #
1

#
2

#
3

of sifted basis choices which is
generated by the protocol. This is a random variable with possible values 110, 101 and 011.

We are now going to calculate the probability P
⇥

(110) that the protocol outputs a sifted basis choice string which
indicates that the first two sifted qubits have been measured in the Z basis and the last sifted qubit has been measured
in the X-basis. For this, we would like to remind the reader of the conventions that we made in Section IB, where
we explained the meaning of the random variables N

x

, N
z

and N
d

and our conventions for the notation.

Proposition 1: For Protocol 1 with n = 1, k = 2, it holds that

P
⇥

(110) = g2
z

, where g
z

=
p2
z

p2
z

+ p2
x

. (12)
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Proof. We have that (explanations for these equalities follow below)

P
⇥

(110) =
NX

n

x

=1

NX
n

z

=2

NX
n

d

=0

P
⇥N

x

N

z

N

d

(110, n
x

, n
z

, n
d

) (13)

=
NX

n

z

=2

NX
n

d

=0

P
⇥N

x

N

z

N

d

(110, 1, n
z

, n
d

) (14)

=
NX

n

z

=2

NX
n

d

=0

p2
x

(p2
z

)k(2p
x

p
z

)d
✓
n
z

+ n
d

n
d

◆
(15)

= g2
z

, where g
z

=
p2
z

p2
z

+ p2
x

. (16)

Equation (13) is just stating that P
⇥

is the marginal of P
⇥N

x

N

z

N

d

. Equation (14) follows from

P
⇥N

x

N

z

N

d

(110, n
x

, n
z

, n
d

) = 0 for n
x

� 2 . (17)

One can see (17) as follows: If N
x

� 2, then necessarily N
z

= 2, because N
x

> n^N
z

> z is impossible in Protocol 1.
This means that during the random discarding, no Z-agreement gets discarded. Moreover, if N

x

� 2, then the last
round of the loop phase must be a Z-agreement. Since this Z-agreement is not discarded, we have that ⇥ must
necessarily end in a 1 if N

x

� 2, so ⇥ = 110 is impossible in that case. To see why equation (15) holds, note that the
event

⇥ = 110 ^N
x

= 1 ^N
z

= n
z

^N
d

= n
d

(18)

consists of all runs of the protocol in which one X-agreement, n
z

Z-agreements and n
d

disagreements occurred, and
where the X-agreement was the last round of the loop phase. This is because in every such run, one necessarily ends
up with ⇥ = 110, and because conversely, if ⇥ = 110, then the last round of the loop phase must be an X-agreement.
There are

�
n

z

+n

d

n

d

�
such runs, and each of them has the probability p2

x

(p2
z

)nz (2p
x

p
z

)nd , and therefore

P
⇥N

x

N

z

N

d

(110, 1, n
z

, n
d

) =

✓
n
z

+ n
d

n
d

◆
p2
x

(p2
z

)nz (2p
x

p
z

)nd . (19)

This explains equation (15). Finally, equation (16) is just an evaluation of the expression in the line above. This
completes the proof.

For the other two possible values of ⇥, it turns out that

P
⇥

(011) = P
⇥

(101) =
1� g2

z

2
. (20)

As explained in Section IIA, the security analysis of QKD protocols usually assumes that the sampling probability
P
⇥

is uniform over {0, 1}N
k

, Equations (10) and (11). For this to be true in the case where n = 1 and k = 2, we need
to have P

⇥

(#) = 1/3 for # = 011, 101, 110. This holds if and only if g
z

= g⇤
z

, where

g⇤
z

=
1p
3
, (21)

which in turn is equivalent to p
z

= p⇤
z

, where

p⇤
z

=

�
3 + 2

p
3
� ⇣

1 +
pp

3� 1
⌘

p
3

⇡ 0.539 . (22)

This is bad news for iterative sifting: It means that iterative sifting leads to non-uniform sampling for all values of p
z

expect p
z

= p⇤
z

. Interestingly, the value of p⇤
z

does not seem to be a probability that has been considered in the context
of QKD and sifting. In particular, p⇤

z

corresponds to neither the symmetric case p
z

= 1/2 nor to the probability that
has been suggested to be chosen in order to maximize the key rate, c.f. Equation (1).

The value g
z

can be interpreted as the probability that in a certain round of the loop phase, Alice and Bob
have a Z-agreement, given that they do not have a disagreement (which is why the p2

z

is renormalized with the factor
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1/(p2
z

+p2
x

)). Hence, g2
z

is the probability that Alice and Bob’s first two basis agreements are Z-agreements. Therefore,
P
⇥

(110) = g2
z

is what one would intuitively expect: To end up with ⇥ = 110, the first two basis agreements need to
be Z-agreements, and conversely, whenever the first two basis agreements are Z-agreements, Alice and Bob end up
with ⇥ = 110.

More generally, it turns out that for n = 1 and for k 2 N
+

arbitrary, Protocol 1 leads to

P
⇥

(1 . . . 10) = gk
z

, P
⇥

(#) =
1� gk

z

k
for all other # 2 {0, 1}N

k

. (23)

This is a uniform probability distribution if and only if g
z

= g⇤
z

, where

g⇤
z

=

✓
1

k + 1

◆
1/k

, (24)

which is true i↵ p
z

= p⇤
z

, where

p⇤
z

=
g⇤
z

�
p
g⇤
z

(1� g⇤
z

)

2g⇤
z

� 1
. (25)

This, in general, corresponds to neither the symmetric case p
z

= p
x

nor to the probabilities that have been suggested
to be chosen in order to maximize the key rate, c.f. Equation (1).

Hence, we conclude that iterative sifting does not lead to uniformly random sampling, unless p
x

and p
z

are chosen
in a very particular way. This particular choice does not seem to correspond to anything that has been considered in
the literature so far. Hence, the security analysis of QKD protocols that use iterative sifting as a subroutine needs to
be modified, or the iterative sifting needs to be replaced by a sifting scheme that avoids this problem.

2. An attack on non-uniform sampling

How severe is the non-uniform sampling caused by iterated sifting? A decisive answer would require a proper
analysis of a full QKD protocol that contains iterated sifting as its sifting subroutine. This analysis would need to
answer the question whether a secure key can still be extracted, and if so, what would be the decrease in the key rate
compared to uniform sampling. Such an analysis is beyond the scope of the present paper.

To give an idea of the e↵ects of non-uniform sampling nonetheless, we are going to calculate another figure of merit.
We devise a strategy for Eve to attack Protocol 1 during its loop phase and calculate the expected value of the error
rate

E =
1

N

NX
i=1

S
i

� T
i

(26)

that results from this attack. Here, � denotes addition modulo 2 and S
i

and T
i

are the random variables of the bits s
i

and t
i

, respectively, which are generated by Protocol 1. We will devise the attack strategy such that Eve particularly
makes use of the fact that not every value of ⇥ is equally likely. It will be a particular kind of intercept-resend attack,
i.e. Eve intercepts all the qubits that Alice sends to Bob during the loop phase, measures them in some basis and
afterwards, prepares another qubit in the eigenstate associated with her outcome and sends it to Bob.Then we will
show that the attack strategy leads to an error rate below 0.25. This is alarming, since intercept-resend attacks ought
to introduce an error rate of at least 0.25 if the sifting scheme is secure [16].

For the error rate calculation, we assume that the X- and Z-basis is the same for Alice, Bob and Eve, and that
they are mutually unbiased, i.e. they correspond to anticommuting observables. This way, if Alice and Bob measure
in the same basis, but Eve measures in the other basis, then Eve introduces an error probability of 1/2 on this qubit.
Moreover, to keep things easy, we want to make this calculation for the easiest possible choice of parameters. Consider
Protocol 1 with the parameters k = n = 1. From equations (24) and (25), we get that the sampling probabilities in
this case are

P
⇥

(01) =
p2
x

p2
x

+ p2
z

, P
⇥

(10) =
p2
z

p2
x

+ p2
z

. (27)

These sampling probabilities are uniform for the symmetric case p
x

= p
z

, but are non-uniform for all other values. In
the following, we assume p

z

> 1/2, which makes the sample ⇥ = 10 more likely than the sample ⇥ = 01. We choose
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the following attack: In the first round of the loop phase, she attacks in the X-basis, and in all the other rounds, she
attacks in the Z-basis. We choose the attack this way because we know that the first basis agreement is more likely
to be an X-agreement, whereas the second basis agreement is more likely to be a Z-agreement. We will calculate
now that the above attack introduces an expected error rate below 0.25 for 1/2 < p

x

< 1, and reaches a minimum of
hEi ⇡ 0.228 for p

x

⇡ 0.73.
The calculation goes as follows. We first make a split:

hEi =
X
#

P [⇥ = #] hE|⇥ = #i (28)

= P [⇥ = 01] hE|⇥ = 01i| {z }
4

x

+P [⇥ = 10] hE|⇥ = 10i| {z }
4

z

. (29)

We have that

4
x

=
1X

n

x

=1

✓
P [⇥ = 01 ^N

x

= n
x

^A
1

= B
1

= 0] hE|⇥ = 01 ^N
x

= n
x

^A
1

= B
1
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In a similar way, we get:
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Equations (29), (32) and (33) taken together result in
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Figure 1 shows a plot of hEi as in (34) as a function of p
x

. As one can see, hEi achieves a minimum of hEi ⇡ 0.228
for p

x

⇡ 0.73.

C. Basis information leak

We will now turn our attention to the second problem with iterative sifting. We mentioned in Section IIA that
the conclusions of the parameter estimation are only valid if (A1) the sampling probability is uniform and (A2) the
basis choice register is uncorrelated to Alice’s and Bob’s qubits before measuring. We have seen in Section II B that
iterative sifting violates (A1) and that this leads to an advantage for Eve. In this section, we will see in Section IIC 1
that iterative sifting leads to a violation of (A2). (We will explain this more formally in Section IV.) We say that
this violation of (A2) leads to a basis information leak, because it allows Eve to know which basis agreements Alice
and Bob already had during the course of the protocol. We show in Section IIC 2 that this allows for an adaptive
intercept-resend attack that introduces an error rate of only ⇡ 0.163.
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hEi

FIG. 1. The error rate induced by Eve’s attack on non-uniform sampling.

1. Iterative sifting leads to a basis information leak

In iterative sifting, Protocol 1, information about Alice’s and Bob’s basis choices reaches Eve in every round of
the loop phase. In Step 5 of round r, Alice and Bob communicate their basis choice a

r

, b
r

of that round. They do
so because they want to condition their upcoming action on the strings a

1

. . . a
r

and b
1

. . . b
r

: if they show enough
basis agreements, they quit the loop phase; otherwise they keep repeating. What seems to have remained unnoticed
in the literature: Eve can also condition her actions on a

1

. . . a
r

and b
1

. . . b
r

. The way we have chosen the quantum
communication in Protocol 1, this means that if there is a round r + 1, Eve can correlate the state of the qubit
that Alice sends to Bob in round r + 1 with a

1

. . . a
r

and b
1

. . . b
r

. Hence, the state of the qubit that Bob measures
is correlated with the classical register that keeps the information about the basis choice. We will state this more
formally in Section IV.

2. An attack on basis information leak

We will now design an attack strategy for Eve that makes use of the basis information leak. It is an adaptive
strategy, in which Eve’s action in round r+1 depend on the past communication of the strings a

1

. . . a
r

and b
1

. . . b
r

.
Again, we make things as simple as possible and consider Protocol 1 with the smallest possible parameters n = k = 1.
To make sure our attack is really exploiting the basis information leak and not the non-uniform sampling, we set
p
x

= p
z

= 1/2. In this case, the sampling is uniform,

P
⇥

(01) = P
⇥

(10) =
1

2
(35)

(c.f. Equation (27) in Section II B 2).
Before we define Eve’s strategy, we want to give some intuition. Suppose that in the course of the protocol, Eve

learns that Alice and Bob just had their first basis agreement. If this first agreement is an Z-agreement, say, what
does this mean for Eve? She knows that the protocol will now remain in the loop phase until they end up with an
X-agreement. Suppose that she now decides that she will measure all the remaining qubits in the X-basis. Then, if the
next basis agreement of Alice and Bob is an X-agreement, Eve knows the raw key bit perfectly, and her measurement
on that bit did not introduce an error. If the next basis agreement is a Z-agreement, Alice introduces an error on
that test bit. However, there will be a chance that Alice and Bob discard this test bit, because they have a surplus
of two (or more, in the end) Z-agreements, and the protocol forces them to discard all Z-agreements except k = 1
of them. Hence, learning that the first basis agreement was a Z-agreement brings Eve into an favorable position:
She knows that attacking in the X-basis will necessarily tell her the raw key bit, while she has quite some chance to
remain undetected. Of course, this intuition does not prove anything, but it is the guideline for designing our attack
on basis information leak. For this attack, we can then calculate the error rate, which has more evidential value.

Consider the following intercept-resend attack. Before the first round of the loop phase, Eve flips a fair coin. Let
F be the random variable of the coin flip outcome and let 0 and 1 be its possible values. If F = 0, then in the first
round, Eve attacks in the X basis, and if F = 1, she attacks in the Z-basis. In the subsequent rounds, she keeps
attacking in that basis until Alice and Bob first reached a basis agreement. If it is an X-agreement (is equivalent
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to ⇥ = 01), Eve attacks in the Z-basis in all remaining rounds, and if it is a Z-agreement (which is equivalent to
⇥ = 10), she attacks in the X-basis in all remaining rounds.

As in Section II B 2, let hEi be the expected value of the error rate as defined in Equation (26). Again, we assume
that the X- and Z-basis are the same for Alice, Bob and Eve and that they correspond to anticommuting observables.
Then we have that (explanations below)

hEi = P
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(0) hE|F = 0i+ P
F
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. (38)

Equality (36) is just a decomposition of hEi into conditional expectations. Equality (37) follows from the fact that
the problem is symmetric under the exchange of X and Z, i.e. under the exchange of 0 and 1. The only quantity that
is not trivial to be calculated in Equation (38) is the expected value of the error rate, given that Eve first measures
in X and that the first basis agreement is an X-agreement. It is calculated as follows:
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where ln denotes the logarithm to base e. Therefore,

hEi = 1
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(43)

=
2� ln 2
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⇡ 0.163 . (45)

Hence, the basis information leak allows Eve to go far below the critical expected error rate of 0.25 that one would
expect for secure sifting [16].

D. Relation between the two problems

1. Independence of the two problems

Are non-uniform sampling and basis information leak really two di↵erent problems, or is one of them a consequence
of the other? The attack strategy in Section IIC 2 shows that basis information leak can occur without the problem
of non-uniform sifting, because the attack strategy works even though sampling is uniform. Can non-uniform sifting
occur without basis information leak? A closer look at the attack strategy that we devised in Section II B 2 hints that
this is possible: The attack strategy works, even though it completely ignores the communication of Alice and Bob,
so it did not make any use of the basis information leak due to this communication.

A more dramatic example shows clearly that non-uniform sampling can occur without basis information leak.
Consider a sifting-protocol in which Alice and Bob agree in advance that they will measure the first n = 100 qubits
in the X-basis, and that they will measure the second k = 100 qubits in the Z-basis, without any communication
during the protocol. This leads to a very dramatic form of non-uniform sampling, because P

⇥

(0 . . . 01 . . . 1) = 1 and
P
⇥

(#) = 0 for all other # 2 {0, 1}N
k

. If Eve attacks the first 100 rounds in X and the second 100 rounds in Z, then she
knows the raw key perfectly, without introducing any error. At the same time, there is no communication between
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Alice and Bob during the protocol, so no information about the basis choice is leaked during the protocol. Instead,
Eve (who is always assumed to know the protocol) already had this information before the first round.

Hence, we conclude that the problems of non-uniform sampling and basis information leak are indeed two inde-
pendent problems. They just happen to occur simultaneously for iterated sifting, but they can occur separately in
general.

2. An attack that exploits both problems

If the two problems are independent, can we devise an attack strategy for Eve that exploits both of them? This
is indeed the case. We again choose the parameters k = n = 1 for Protocol 1. Moreover, we assume that p

x

> 1 to
make sure that we have non-uniform sampling. Let Eve’s attack be as follows. She begins in the same way as in the
attack on non-uniform sampling and attacks in the X-basis. However, as in the attack on the basis information leak,
she makes her attack adaptive by following the rule that she switches to the Z-basis when Alice and Bob announce
that they had an X-agreement. If Alice and Bob announce a Z-agreement, Eve keeps attacking in the X-basis.

It turns out that for this attack strategy, the expected value of the error rate is
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A plot of (46) is shown in Figure 2 as a function of p
x

. As one can see, the expected error rate has a minimum of
hEi ⇡ 0.158 for p

x

⇡ 0.57. Hence, this combined attack on both problems performs much better than the one on
non-uniform sampling alone (with a minimal expected error rate of ⇡ 0.228, see Section II B 2) and even better than
the attack on the basis information leak alone (with a minimal expected error rate of ⇡ 0.163, see Section IIC 2).

p

x

hEi

FIG. 2. The error rate induced by Eve’s attack on both problems.

III. HOW CAN THESE PROBLEMS BE FIXED? A CANDIDATE PROTOCOL

We have seen that iterative sifting leads to the problems of non-uniform sampling and to a basis information leak.
What does this mean for the analysis of QKD protocols? There are two ways to deal with this problem:

(W1) Modify the analysis of the QKD protocols that use iterated sifting as their sifting subroutine,

(W2) Devise new protocols that use sifting subroutines that do not exhibit non-uniform sampling or basis information
leak.

Reasons for choosing way (W1), i.e. for sticking to iterated sifting, could be the hope that iterated sifting leads to a
high key rates (c.f. the discussion at the end of Section IA). In that case, one would need to find a way to show that
it is possible to extract a secure from the raw key without relying on Inequality (8), or find a new way to prove it.

Choosing option (W2) is attractive because the tail probability analysis to arrive at Inequality (8) would not need
to be modified. This does not mean that the QKD security analysis can remain unchanged altogether. The new
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protocol may require including new security parameters that do not arise for iterated sifting. (We will see below that
for the protocol that we propose, this is the case.)

We choose to deal with the problem in way (W2). In Section IIIA, we propose a protocol that may replace iterated
sifting as a sifting subroutine. Unlike the iterated sifting protocol, its loop phase has a fixed number of rounds after
which it enters the final phase, without a termination condition that depends on previous rounds. For this reason, we
call it the fixed round number protocol. We give some evidence on why this may solve the problems in Section III B.

A. Description of the fixed round number protocol

Our approach to designing a sifting protocol that does not exhibit the problems described above is to identify the
elements of Protocol 1 that cause the problems and to modify them such that the problems may disappear. As we
have seen, it is the communication in Step 5 during the loop phase of Protocol 1 which causes the basis information
leak. An obvious fix to this problem is to take this communication out of the loop phase and to postpone it to the
final phase, when all the quantum communication is over. Then there is no classical communication during the loop
phase, and hence, there cannot be a termination condition that depends on classical communication. The condition
needs to be fixed from the beginning, and it can be nothing but to set the number M of rounds to a fixed number.
This number then becomes a parameter of the protocol.

This introduces a new problem: There is no guarantee that after the fixed number M � n + k, the number N
x

of X-agreements is at least n and the number N
z

of Z-agreements is at least k. In order to perform the parameter
estimation according to Protocol 2, however, these are the minimal numbers of basis agreements that Alice and Bob
need to have; otherwise, Inequality (8) is meaningless. Thus, unless one wants to introduce a new tail probability
analysis as well (which would make choosing way (W2) somewhat pointless), there is a strictly positive probability
that Alice and Bob have to abort the sifting protocol because they have too many basis disagreements.

The protocol that results from the described changes is written out in Protocol 3. The protocol still involves random
discarding (Step 6). This is necessary to guarantee that the tail probability analysis that leads to Inequality (8) still
goes through. If this would not be done, then the sample size and the total number of bits would be stochastic, which
would require a more sophisticated analysis. However, as we will see in Section III B, this makes the computation of
the sample probabilities (which is required to prove uniform sampling) more di�cult.

B. On the prospect of the fixed round number protocol to solve the problems

Since the fixed round number protocol, Protocol 3, does not involve any communication about the basis choices
during its loop phase, it is trivially true that there is no basis information leak. How about uniform sampling? The
fact that Protocol 3 involves random discarding makes it di�cult to find closed-form expressions for the sampling
probabilities P

⇥

(#) as functions of the parameters k, n, p
x

, p
z

and M . Instead of attempting this, we give an
example calculation. We show that Protocol 3 leads to uniform sampling in the case where n = k = 1 and where
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,M � n+ k are arbitrary. Hence, consider Protocol 3, with n = k = 1 and with
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, M � 2. We are now going to show that for these parameters, P
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The di↵erence to the case of Protocol 1 is that now, the sums do not go to infinity but are subject to the fixed number
M of total rounds. Moreover, N

d

is now fully determined by N
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, namely N
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. We can rewrite
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where P
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) is the probability that Alice end up with ⇥10, given that they had n
x

X-agreements and
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Z-agreements during the loop phase of the protocol. The key observation for proving uniform sampling is that
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Fixed Round Number Sifting

Protocol Parameters: n, k 2 N
+

, p
x

, p

z

2 [0, 1] with p

x

+ p

z

= 1 and M 2 N
+

with M � n+ k.

Output: Either no output (if the protocol aborts in Step 5’) or (for N = n+ k)

Alice: N -bit string (s
i

)N
i=1

2 {0, 1}N (measurement outcomes, sifted),

Bob: N -bit string (t
i

)N
i=1

2 {0, 1}N (measurement outcomes, sifted),

public: N -bit string (#
i

)N
i=1

2 {0, 1}N with
P

i

#

i

= k (basis choices, sifted), where 0 means X-basis and 1 means Z-basis.

Number of rounds: Fixed number M (protocol parameter)

The protocol

Loop phase: Steps 1 to 4 are repeated M times (round index r = 1, . . . ,M). Starting with round r = 1, Alice and Bob do
the following:

Step 1: (Preparation): Alice prepares a qubit pair in a maximally entangled state.

Step 2: (Channel use): Alice uses the quantum channel to send one share of the qubit pair to Bob.

Step 3: (Random bit generation): Alice and Bob each (independently) generate a random classical bit a
r

and b

r

, respectively,
where 0 is generated with probability p

x

and 1 is generated with probability p

z

.

Step 4: (Measurement): Alice measures her share in the X-basis (if a
r

= 0) or in the Z-basis (if a
r

= 1), and stores the
outcome in a classical bit y

r

. Likewise, Bob measures his share in the X-basis (if b
r

= 0) or in the Z

0-basis (if
b

r

= 1), and stores the outcome in a classical bit y0
r

.

Final phase: The following steps are performed in a single run:

Step 5’: (Quota Check): Alice and Bob determine the sets

X (M) = {r 2 {1, . . . ,M} | a
r

= b

r

= 0} ,
Z(M) = {r 2 {1, . . . ,M} | a

r

= b

r

= 1}

They check whether the quota condition (X (M) � n and Z(M) � k) holds. If it holds, they proceed with Step 6.
Otherwise, they abort.

Step 6: (Random Discarding): Alice and Bob choose a subset X ✓ X (M) of size k at random, i.e. each subset of size k is
equally likely to be chosen. Analogously, they choose a subset Z ✓ Z(M) of size k at random. Then they discard
the bits a

r

, b
r

, y
r

and y

0
r

for which r /2 X [ Z.

Step 7: (Order-preserving relabeling): Let r

i

be the i-th element of X [ Z. Then Alice determines (s
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i=1

2 {0, 1}N , Bob
determines (t
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2 {0, 1}N and together they determine (#
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2 {0, 1}N , where for every i 2 {1, . . . , N},
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) .

Step 8: (Output): Alice locally outputs (s
i

)N
i=1

, Bob locally outputs (t
i

)N
i=1

and they publicly output (#
i

)N
i=1

.

Protocol 3: The fixed round number sifting protocol.

Equations (48) and (49) imply that
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(01) . (51)

C. An e�ciency comparison with iterative sifting

We define the e�ciency ⌘ of a sifting protocol as

⌘ =
R

M
, (52)

where R is the number of rounds that are kept after sifting and M is the total number of rounds performed in the
loop phase of the protocol. The e�ciency ⌘ depends on the particular course of the protocol: di↵erent runs of the
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protocol may have di↵erent e�ciencies. Therefore, ⌘ is a random variable. Whereas in the case of iterative sifting,
the number R

I

is fixed and the number M
I

is a random variable, the opposite is true for the fixed round number
protocol, where M

F

is fixed but but R
F

is a random variable. (Note that the fixed round number protocol may abort,
in which case R

F

= 0).
To compare the e�ciencies of the two protocols, we calculate the expected value of ⌘ in each case. We first do this

for the case of iterative sifting. Recall that A
r

, B
r

is the random variable of Alice’s and Bob’s basis choice in round
r, respectively, and that N

d

is the number of basis disagreements. Then we have:
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For the case of the fixed round number protocol, we have:
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� n ^N
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� k] (63)

=
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M
(n+ k)

M�n�kX
n
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� n ^N
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� n ^N
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] (65)

=
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M

M�n�kX
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M�n
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�nX
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z
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(p2
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)M�n

z

�n

d(p2
x

)nz (2p
x

p
z

)nd

✓
M

n
d

◆✓
M � n

d

n
z

◆
. (66)

The two values are plotted in Figure 3 for symmetric probabilities as a function of n. The number k is set to be
identical to n in these plots. Since the fixed round number protocol depends on an additional parameter M , a choice
had to be made in order to plot a value. We chose to optimize over M for each value of n.

IV. FORMAL CRITERIA FOR FUTURE SIFTING PROTOCOLS TO BE SECURE

In Section II, we have seen that iterative sifting leads to problems. In Section III, we have given a partial answer
to the question how these problems can be avoided by presenting a candidate protocol and making some example
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n = k

h⌘i

FIG. 3. E�ciency comparison of the two sifting protocols. The plots are calculated for symmetric probabilities p
x

= p

z

= 1/2.
The red curve shows the expected value of the e�ciency for the iterated sifting protocol as a function of the raw key length n,
which is kept at the same value as the number k of test bits. For the fixed round number protocol, the additional parameter
M has been optimized for each value of n = k.

calculations. In this section, we give a more complete answer to the question by presenting two simple formal criteria
that are su�cient for a sifting protocol to lead to a correct parameter estimation. More precisely, we describe two
formal properties of the state produced by a sifting protocol which guarantee that if the protocol is followed by the
parameter estimation protocol (Protocol 2), then Inequality (8) is true. We prove the su�ciency of these two criteria
by deriving (8) from these two criteria.

In order to state the two criteria and the random variable ⇤
key

in (8) formally, we need to define a certain kind of
quantum state ⇢

A

N

B

N

⇥

N associated with a sifting protocol. To explain what this state is, we explain what the state
⇢
A

N

B

N

⇥

N is like for Protocol 3. It is a state that is best described in a variation of Protocol 3. Suppose that Alice and
Bob run Protocol 3, but they skip the measurement (Step 4) in every round. Instead, they keep each qubit system in
their lab without modifying its state. This may be practically di�cult, but since ⇢

A

N

B

N

⇥

N is a purely mathematical
construct, we do not worry about the technical feasibility. Let us compare the output of this modified protocol with
the output of the original Protocol 3:

original Protocol 3 Protocol 3 without measurements

Alice: classical bit string s = (s
i

)N
i=1

N -qubit state ⇢
A

N

Bob: classical bit string t = (t
i

)N
i=1

N -qubit state ⇢
B

N

public: classical bit string # = (#
i

)N
i=1

classical bit string # = (#
i

)N
i=1

Hence, if we model the classical bit string # as the state of a classical register ⇥N , we can say that the output of the
modified Protocol 3 is a QNQNCN -state ⇢

A

N

B

N

⇥

N . This is the state ⇢
A

N

B

N

⇥

N associated with Protocol 3 that we
mean. More generally, the state ⇢

A

N

B

N

⇥

N associated with a sifting protocol is its output state in the case where all
the measurements are skipped.

This state still carries all the probabilistic information of the original protocol. To see this, let X = {X
0

,X
1

} and
Z = {Z

0

,Z
1

} be the POVMs describing Alice’s X- and Z-measurement, let X0 = {X0
0

,X0
1

} and Z0 = {Z0
0

,Z0
1

} be the
POVMs describing Bob-s X- and Z-measurement, and let M = {M

0

,M
1

} be the projective measurement on ⇥ with
respect to which the state of the register ⇥ is diagonal. Define the operators

O
0

= X
0

, O
1

= X
1

, O
2

= Z
0

, O
3

= Z
1

,

O0
0

= X0
0

, O0
1

= X0
1

, O0
2

= Z0
0

, O0
3

= Z0
1

.
(67)

Then, the probability distribution over the output of the protocol is

P
ST⇥

(s, t,#) = tr(⇧(s, t,#)⇢
(AB⇥)

N ) , (68)
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where ⇢
(AB⇥)

N is the same state as ⇢
A

N

B

N

⇥

N , but with the registers reordered in the obvious way, and where

⇧(s, t,#) =
NO
i=1

�
O

2#

i

+s

i

⌦O0
2#

i

+s

i

⌦M
#

i

�
. (69)

With the state ⇢
A

N

B

N

⇥

N associated with a sifting protocol at hand, it is easy to define the random variable ⇤
key

associated with the protocol. The relevant probability space is the discrete probability space (⌦
ZZ

0
⇥

, P
ZZ

0
⇥

), where
⌦

ZZ

0
⇥

is the sample space

⌦
ZZ

0
⇥

= {0, 1}N ⇥ {0, 1}N ⇥ {0, 1}N
k

(70)

and where P
ZZ

0
⇥

is the probability mass function

P
ZZ

0
⇥

: ⌦
ZZ

0
⇥

! [0, 1]

(z, z0,#) 7! tr
⇣⇣N

N

i=1

Z
z

i

⌘
⌦
⇣N

N

i=1

Z0
z

0
i

⌘
⌦
⇣N

N

i=1

M
#

i

⌘
⇢
(A

N

B

N

⇥)

N

⌘
.

(71)

Now we are able to formally say what the random variable ⇤
key

of a sifting protocol is. Let ⇢
A

N

B

N

⇥

N be the state
associated with the sifting protocol, let (⌦

ZZ

0
⇥

, P
ZZ

0
⇥

) be the probability space as in Equations (70) and (71). Then
⇤
key

is the random variable

⇤
key

: ⌦
ZZ

0
⇥

! [0, 1]

(z, z0,#) 7! 1

n

NX
i=1

(1� #
i

)(z � z0) ,
(72)

which is the key bit error rate. Analogously, we have the test bit error rate

⇤
test

: ⌦
ZZ

0
⇥

! [0, 1]

(z, z0,#) 7! 1

k

NX
i=1

#
i

(z � z0) .
(73)

This allows us to define the tail probability

p
tail

(µ) = P [⇤
key

� ⇤
test

+ µ | ⇤
test

 q
tol

] . (74)

The following proposition makes the formal statement of the tail probability analysis.

Proposition 2 (Tail probability estimate): Let ⇢
A

N

B

N

⇥

N be a QNQNCN -state, let {Z
0

,Z
1

} and {Z0
0

,Z0
1

} be POVMs
on the quantum systems A and B, let {M

0

,M
1

} be the read-out measurement of the classical system ⇥, let ⇤
key

,
⇤
test

be random variables on the discrete probability space (⌦
ZZ

0
⇥

, P
ZZ

0
⇥

) as defined in Equations (70) to (73) and
let p

tail

be as in Equation (74). Let ⇢
A

N

B

N and ⇢
⇥

N denote the according reduced states of ⇢
A

N

B

N

⇥

N and P
⇥

denote
the according marginal of P

ZZ

0
⇥

. If the two conditions

P
⇥

(#) =

✓
N

k

◆�1

8# 2 {0, 1}N
k

and (75)

⇢
A

N

B

N

⇥

N = ⇢
A

N

B

N ⌦ ⇢
⇥

N (76)

hold, then

p
tail

(µ) 
exp

⇣
�2kn

N

k

k+1

µ2

⌘
p
pass

, (77)

where

p
pass

= P [⇤
test

� q
tol

] . (78)
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The formulation of Proposition 2 allows us to see the formal requirements on a sifting protocol to lead to a correct
parameter estimation: Condition (75) is exactly the statement that the protocol leads to uniform sampling. The
condition reads the same as before, the only di↵erence being that now we have formulated the probability distribution
P
⇥

in terms of the state associated with the protocol. Condition (76) is the formal statement of what it means for a
protocol that the basis choice register is uncorrelated with Alice’s and Bob’s qubits before measuring. Proposition 2
states that if these two conditions are satisfied, then the correlation test of the parameter estimation leads to the right
conclusion. Hence, these are the two conditions that a sifting protocol needs to satisfy in order to be a good sifting
protocol.

We point out that the whole digression to a classical probability space, Equations (70) to (74), is a mere change of
notation. However, the fact that it is possible to express Proposition 2 in terms of a classical probability space shows
that this part of a QKD security analysis is purely classical.

We now turn to the proof.

Proof of Proposition 2. According to Baye’s Theorem, we have that

p
tail

= P [⇤
key

� ⇤
test

+ µ | ⇤
test

 q
tol

] (79)

=
P [⇤

test

 q
tol

| ⇤
key

� ⇤
test

+ µ]P [⇤
key

� ⇤
test

+ µ]

P [⇤
test

 q
tol

]
(80)

 P [⇤
key

� ⇤
test

+ µ]

p
pass

. (81)

We define the total error rate ⇤
tot

as the random variable

⇤
tot

: ⌦
ZZ

0
⇥

! [0, 1]

(z, z0,#) 7! 1

N

NX
i=1

z � z0 .
(82)

For all (z, z0,#) 2 ⌦
ZZ

0
⇥

, it holds that

⇤
key

(z, z,#) � ⇤
test

(z, z,#) + µ (83)

() 1
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(1� #
i

)(z
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i

) � 1
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#
i

(z
i

� z0
i

) + µ (84)

() 1

n

NX
i=1

(1� #
i

)(z
i

� z0
i

) +
1
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NX
i=1

(1� #
i

)(z
i

� z0
i

) � 1

k

NX
i=1

#
i

(z
i

� z0
i

) +
1

k

NX
i=1

(1� #
i

)(z
i

� z0
i

) + µ (85)
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✓
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n
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1

k

◆
NX
i=1

(1� #
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)(z
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� z0
i

) � 1

k

NX
i=1

(z
i
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) + µ (86)

() k

N

✓
1

n
+

1

k

◆
NX
i=1

(1� #
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)(z
i

� z0
i

) � k

N

1

k

NX
i=1

(z
i

� z0
i

) +
k

N
µ (87)

() ⇤
key

(z, z,#) � ⇤
tot

(z, z,#) +
k

N
µ . (88)

We express the error rates ⇤
key

, ⇤
test

and ⇤
tot

in terms of the error numbers ⌃
key

, ⌃
test

and ⌃
tot

,

⌃
key

= n⇤
key

, ⌃
test

= k⇤
test

, ⌃
tot

= N⇤
tot

. (89)

This gives us

⇤
key

� ⇤
tot

+
k

N
µ () ⌃

key

� n

✓
⌃

tot

N
+

N � n

N
µ

◆
(90)

Therefore,

P [⇤
key

� ⇤
test

+ µ] = P
⇥
⌃

key

� n
�
⌃

tot

N

+ N�n

N

µ
�⇤

(91)
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and hence

p
tail


P
⇥
⌃
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� n
�
⌃

tot

N

+ N�n

N

µ
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p
pass

(92)

=
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tot

P [⌃
tot
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N

+ N�n
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tot

⇤
p
pass

(93)

=

P
�

tot

P [⌃
tot

= �
tot

]
P

j

P [⌃
key

= j |⌃
tot

= �
tot

]

p
pass

, (94)

where the sum over j ranges over all possible values of ⌃
key

that are larger or equal to the according value, i.e.

j =

⇠
n

✓
�
tot

N
+

N � n

N
µ

◆⇡
,

⇠
n

✓
�
tot

N
+

N � n

N
µ

◆⇡
+ 1, . . . , n , (95)

where d · e denotes the ceiling function.

h(�
tot

, N, n, j) := P [⌃
key

= j |⌃
tot

= �
tot

] (96)

=
P [⌃

key

= j ^ ⌃
tot
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tot

]

P [⌃
tot
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]
(97)
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(z,z
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(99)

where

⌦
j�

tot

= {(z, z0,#) 2 ⌦
ZZ

0
⇥

| ⌃
key

(z, z0,#) = j ^ ⌃
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} , (100)

⌦
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= {(z, z0,#) 2 ⌦
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⇥
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(z, z0,#) = �
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} . (101)

It holds for all (z, z0,#) 2 ⌦
ZZ

0
⇥

that

P
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0
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(z, z0,#) = P
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0(z, z0)P
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✓
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, (103)

where P
ZZ

0 and P
⇥

are the according marginal distributions of P
ZZ

0
⇥

. Equation (102) follows form (76), and
Equation (103) follows from Equation (75). This implies
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where
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=
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NX
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Equation (107) means that h(�
tot

, N, n, j) is a hypergeometric distribution. We are interested in the tail of this
distribution,

H(�
tot

, N, n, l) :=
nX

j=l

h(�
tot

, N, n, j) , (109)

because according to Equations (94) and (95),

p
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, (110)

where

l =

⇠
n

✓
�
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N
+

N � n

N
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◆⇡
. (111)

There are several well-known bounds on the tail of a hypergeometric distribution. For our case, Serfling’s bound is a
suitable one [15]. The appropriate special case of Serfling’s bound for this case reads

H(�
tot

, N, n, l)  exp

✓
�2

(N � n)n

N

N � n

N � n+ 1
µ2

◆
(112)

= exp

✓
�2

kn

N

k

k + 1
µ2

◆
. (113)

(Instead of Serfling’s bound, one may use Hoe↵ding’s bound [17]. That bound is weaker than Serfling’s bound in this
case, but it has the advantage that it has been formulated directly in terms of hypergeometric distributions [18, 19],
so these references are easier to understand in our context.) Inequalities (110) and (113) together imply

p
tail
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�

tot

P [⌃
tot
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]H(�
tot

, N, n, l)
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(114)


exp

⇣
�2kn

N
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µ2

⌘
p
pass

, (115)

which completes the proof.
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