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Introduction: Quantum Key Distribution (QKD) is a cryptographic task that allows two distant

parties, Alice and Bob, to communicate securely over an untrusted channel, provided they have access

to an authenticated classical channel. The first QKD protocol, BB84, appeared more than three decades

ago [2] and the last 30 years have witnessed staggering experimental advances, making QKD the first

quantum information technology. This parallels the development of more complete security proofs, first

given in the asymptotic limit of infinitely long keys [6, 11, 7] and more recently in the composable security

framework for finite keys [9]. While the former results are of great theoretical importance, only the more

recent security proofs that are valid for finite keys can claim practical relevance.

Let us for the moment focus on entanglement-based QKD, as first proposed in [4]. From a math-

ematical point of view, an entanglement-based QKD protocol is a completely positive trace-preserving

(CPTP) map composed of local operations and classical communication (LOCC) that takes a bipartite

state ρAB as an input and returns to Alice and Bob two classical binary strings, the keys, ideally identi-

cal and independent of the transcript produced by the protocol. Proving the security of a such a QKD

protocol therefore amounts to establishing that this map is indistinguishable from an ideal map that

either outputs random identical keys or aborts, for any possible quantum input, potentially entangled

with a reference system held by an eavesdropper — it is a purely mathematical question.

The Problem: Surveying the current literature on the topic, we were not able to find a security proof

for any QKD protocol that satisfies the following three very stringent criteria:

1. The protocol is able to extract a composably secure key for reasonable parameters (i.e. realistic

noise level, keys of a length that can be handled with state-of-the-art computer hardware).

2. The protocol is completely specified and all aspects of it are formalized, including all the randomness

that is required and all the transcripts that are produced.

3. All the assumptions on the devices used in the protocol are fully formalized.

As mentioned above, the early asymptotic proofs fail with Point 1. Moreover, while Renner’s anal-

ysis [9] gives bounds for finite keys, these are not sufficient to pass Point 1 either since the bounds are

not good enough for realistic key lengths.1 Furthermore, our requirements in Point 2 are very stringent

and we are not aware of any security proof that has met this level of rigor, except arguably Renner’s

thesis [9]. More recent security proofs by one of the present authors [12] and Tsurumaru and Hayashi [5]

satisfy Point 1, but they are not fully formalized and thus do not satisfy Point 2.2 Point 3 hinges on

Point 2 and can be avoided using device-independent protocols, which will not be discussed here.

∗School of Physics, University of Sydney, NSW 2006, Australia
†Inria, EPI SECRET, B.P. 105, 78153 Le Chesnay Cedex, France
1Unfortunately, de Finetti reductions often do not provide good bounds in practice and at least 105 or 106 uses of the

quantum channel are typically required for the key rate to effectively become nonzero.
2For example, a small flaw in the formalization of the protocol in [12] has recently been pointed out by Pfister et al. in

unpublished work. While this does not suggest that the security proof in [12] is inherently wrong, it is a stark reminder

that Point 2 is often not taken seriously enough.
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It is in fact common in much of the present literature to fully formalize some aspects of a security

proof while keeping other aspects vague and informal — and this has lead to various misconceptions.

For example, it is often argued that collective attacks are optimal using symmetry and de-Finetti argu-

ments [10, 3]. To get such symmetry it is at some point or another used that measurements are performed

in a random basis or that a random subset of raw key bits are used for parameter estimation. However,

complete security proofs also must allow for the protocol to abort in case certain thresholds are not met,

and one is then left to analyze the state of the system conditioned on the fact that the protocol does not

abort. However, since the abort event is dependent on the random seed used to choose the basis and

subset, conditioned on not aborting these seeds are no longer independent of the state of the system.

Hence, many simple arguments based on symmetry or independent randomness simply do not go trough

without modification when the security proof is put under a microscope.

Our Contribution: In the present paper, we give a fully rigorous and self-contained security proof for

QKD that satisfies all the above conditions. The proof is based on the security proof in [12] and uses an

entropic uncertainty relation as its main ingredient, but our analysis is more rigorous and consequently a

few additional technical results are needed. The resulting key rate is much better than the one achieved

using the exponential de Finetti theorem in [9]. To the best our knowledge, this constitutes the most

detailed and rigorous security proof of QKD so far. We also believe that our proof is more accessible than

others since understanding it does not require prior knowledge of various tricks and security reductions3,

it is a purely mathematical argument that we provide in the attached technical material.

We first describe and analyze a simple entanglement-based QKD protocol, reminiscent of [1] (outlined

in Table 1), before moving on to a more realistic ‘prepare and measure’ BB84 protocol.

Entanglement-Based Protocol: The protocol is parametrized as follows. Let k, n ∈ N. Here k and

n are the size (in bits) of the raw key used for parameter estimation and key extraction, respectively.

Moreover, let δ ∈ (0, 12 ) be the tolerated error rate. Also define m := n+ k as the total length of the raw

key, and Πm,k := {π ⊂ [m] : |π| = k}, the set of subsets of [m] of size k.

(KA,KB , S, C, F ) = qkd simplek,n,δ,ec,pa
(
ρAB

)
:

Input: Alice and Bob are given a state ρAB , where A = A[m] and B = B[m] are comprised of m quantum systems.

Randomization: They agree on a random string Φ ∈ {0, 1}m, a random subset Π ∈ Πm,k, and random hash functions

Hec ∈ Hec as well as Hpa ∈ Hpa. The corresponding uniformly random seeds are denoted S = (SΦ, SΠ, SHec , SHpa ).

Measurement: Alice and Bob measure the m quantum systems with the setting Φ. They store the binary measurement

outcomes in two strings, the raw keys. These are denoted (X,V ) and (Y,W ) for Alice and Bob, respectively. Here

V,W are of length k and correspond to the indices in Π, whereas X,Y of length n correspond to indices not in Π.

Parameter Estimation: Alice sends V to Bob, the transcript is denoted CV . Bob compares V and W . If the fraction

of errors exceeds δ, Bob sets the flag Fpe = ‘⊥’ and they abort. Otherwise he sets Fpe = ‘ 6⊥’ and they proceed.

Error Correction: Alice sends the syndrome Z = synd(X) to Bob, with transcript CZ . Bob computes X̂ = corr(Y, Z).

Alice computes the hash T = Hec(X) of length t and sends it to Bob, with transcript CT . Bob computes Hec(X̂).

If it differs from T , he sets the flag F ec = ‘⊥’ and they abort the protocol. Otherwise he sets F ec = ‘6⊥’ and they

proceed.

Privacy Amplification: They compute keys KA = Hpa(X) and KB = Hpa(X̂) of length `.

Output: The output of the protocol consists of the keys KA and KB , the seeds S = (SΦ, SΠ, SHec , SHpa ), the transcript

C = (CV , CZ , CH) and the flags F = (Fpe, F ec). In case of abort, we assume that all registers are initialized to a

predetermined value.

Table 1: Simple QKD Protocol.

Fix an error correcting scheme described by a quintuple ec = {r, t, synd, corr,Hec}. Here, r ∈ N is

the length (in bits) of the error correction syndrome, and t ∈ N is then length (in bits) of the hash

used for verification. Moreover, synd and corr are functions of the form synd : {0, 1}n → {0, 1}r and

corr : {0, 1}n × {0, 1}r → {0, 1}n used to compute the error syndrome and calculate the corrected

3. . . which are also sometimes proved in a different context than the one they are used in . . .
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(KA,KB , S, C, F ) = qkd idealk,n,δ,ec,pa
(
ρAB

)
:

Run protocol: Set (KA,KB , S, C, F ) = qkd simplek,n,δ,ec,pa(ρAB).

Output: If Fpe = F ec = ‘6⊥’, then replace KA and KB by an independent and uniformly distributed random variable K,

i.e. set KA = KB = K.

Table 2: Ideal QKD Protocol.

string, respectively. We do not need to assume anything about the structure of this code.4 Finally,

Hec :=
{
hec : {0, 1}n → {0, 1}t

}
is a universal2 family of hash functions.

Finally, privacy amplification is characterized by a couple pa = {`,Hpa}, where ` ∈ N with ` ≤ n is

the length (in bits) of the extracted key and Hpa :=
{
hpa : {0, 1}n → {0, 1}`

}
is a universal2 family of

hash functions.

Security: The security proof of the simple protocol is done in the composable security framework (see,

e.g., [8]), and essentially consists of bounding the diamond distance between the protocol and an ideal

protocol defined in Table 2. We show that the action of the map qkd simplek,n,δ,ec,pa is indistinguishable

from the action of the map qkd idealk,n,δ,ec,pa prescribed in Table 2 when the protocol parameters satisfy

certain natural constraints. In the technical supplement we give an upper bound on

∆k,n,δ,ec,pa := sup
ρABE

1

2

∥∥qkd simplek,n,δ,ec,pa(ρABE)− qkd idealk,n,δ,ec,pa(ρABE)
∥∥
1

(1)

in terms of the protocol parameters. This bound is our main technical contribution.

Prepare-and-Measure Protocol: We prove the security of a more realistic ‘prepare and measure’

protocol in the attached technical supplement by reducing it to the above entanglement-based protocol

and specify all the assumptions required for this transformation.
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Abstract

The goal of this work is to provide a self-contained, rigorous proof of the security of quantum

key distribution. Our presentation differs from previous work in that we are careful to model all

the randomness that is used throughout the protocol and take care of all the transcripts of the

communication over the public channel.
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Nomenclature

[M ] Set {1, 2, . . . ,M}
c̄ Parameter quantifying the overall quality of the measurements

δ Threshold for the parameter estimation test

` Length of the final key

Ef CPTP map associated to the classical function f

Hec Universal2 family of hash functions used in the error correcting scheme

Hpa Universal2 family of hash functions used in the privacy amplification scheme

NA→B Quantum channel between Alice and Bob in the Prepare and Measure version

6⊥ Passing symbol for the various tests

Ω Subset of [M ] for which Bob obtains a conclusive measurement result

ω Final output of the protocol

⊥ Abort symbol

ρ Quantum state before any measurement took place

Σ Subset of m indices for which Alice and Bob’s settings agree, and where Bob obtained a conclusive

measurement outcome

σ Quantum state once Alice and Bob’s quantum registers have been entirely measured

τ Quantum state after the registers used for parameter estimation have been measured

A Alice’s initial quantum system

B Bob’s initial quantum system

C Register containing all the transcripts

CV Transcript corresponding to register V

ci Parameter quantifying the quality of the measurement on register i

E Eve’s quantum memory

F Register corresponding to all the flags: F = (F pe, F ec) for the idealized protocol, and F =

(F sift, F pe, F ec) for the Prepare and Measure version

F ec Flag for the error correction test

F pe Flag for the parameter estimation test

F sift Flag for the sifting procedure in the Prepare and Measure version

hec Hash function used for the error correction test

hpa Hash function used for the privacy amplification

k Length of the raw key used for parameter estimation

KA Register for Alice’s final key

KB Register for Bob’s final key

M Number of states sent by Alice in the Prepare and Measure version

m Number of states measured by Alice and Bob in the idealized version

Mφ,x
Ai

Measurement operator acting on register Ai with setting φ and outcome x

n Length of the raw key used for key distillation

R Register for Alice’s raw key in the Prepare and Measure Version
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r Length of the error correction syndrome

S Register corresponding to all the seeds S = (SΦ, SΠ, SΞ, SΘ, SHpe , SHec) in the idealized protocol,

or S = (SΦA , SΦB , SΠ, SΞ, SΘSHpe , SHec) in the Prepare and Measure version

SΦ Seed for the choice of the measurement bases in the idealized protocol

SΠ Seed for the choice of the random subset π ∈ Πm,k used for parameter estimation

SΘ Seed for the choice of the measurement bases for the subsystems used for key distillation

SΞ Seed for the choice of the measurement bases for the subsystems used for parameter estimation

SΦA Seed for the choice of Alice’s measurement bases in the Prepare and Measure version

SΦB Seed for the choice of Bob’s measurement bases in the Prepare and Measure version

SHec Seed for the choice of the hash function used in the error correction test

SHpe Seed for the choice of the hash function used in the parameter estimation test

T Register for Bob’s measurement results in the Prepare and Measure Version

t Length of the hash used for verification in the error correcting scheme

V Register for Alice’s classical bits used for parameter estimation

W Register for Bob’s classical bits used for parameter estimation

X Register for Alice’s classical bits used for key distillation

Y Register for Bob’s classical bits used for key distillation

Z Register for Alice’s syndrome

corr Function that calculate the corrected string

ec Error correcting scheme

pa Privacy amplification scheme

pe Test function used in the parameter estimation step

ro Reordering map used in the randomization step

synd Function computing the error syndrome

1 Notation

We use [n] to denote the set {1, 2, . . . , n} and use A[n] to denote a collection of separate quantum systems

A1A2, . . . , An. Similarly, if the subscript is a subset of [n], we just refer to the subsystems in the subset.

We write S(A) to denote normalized states (positive semi-definite operators with unit trace) on A.

We model discrete random variables by quantum systems (called registers) with a fixed orthonormal

basis. For example, let x ∈ X be a random variable with probability law x 7→ PX(x). Then we write the

corresponding quantum state as

ρX =
∑
x∈X

PX(x) |x〉〈x|X , (1)

where {|x〉}x∈X is an orthonormal basis of the space X. Conversely, we write Prρ[X = x] = PX(x).

More generally, the classical register might be correlated with a quantum system A, and this is

modeled using classical-quantum (cq) states:

ρXA =
∑
x∈X

PX(x) |x〉〈x|X ⊗ ρA|X=x , (2)

where we use ρA|X=x to denote the quantum state on A conditioned on the register X taking the value

x. We also write Prρ[X = x] = tr{|x〉〈x|X ρXA} = PX(x). This convention is extended to arbitrary

events defined on a classical register X, i.e. if Ω : X → {0, 1} is an event, we write

Pr
ρ

[Ω] =
∑
x∈X

Px(x)Ω(x) and ρXA|Ω =
1

Prρ[Ω]

∑
x∈X

Px(x)Ω(x) |x〉〈x|X ⊗ ρA|X=x . (3)

In some occasions we will also write ρXA,Ω = Prρ[Ω]ρXA|Ω, a state that is not normalized.
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Let f : X → Y be a function acting on classical registers of a classical-quantum state. Then we

denote by Ef : X → XY the corresponding completely positive trace-preserving map

Ef [·] =
∑
x∈X
|f(x)〉Y |x〉〈x|X · |x〉〈x|X 〈f(x)|Y . (4)

Note that we defined the map such that the input register is kept intact.

A generalized measurement on A is a set of linear operators {ExA}x∈X such that∑
x∈X

(ExA)†(ExA) = 1A , (5)

where 1A denotes the identity operator on A.

Part I

Entanglement-Based Protocol

2 The Entanglement-Based Protocol

We first focus on a very simple and unrealistic QKD protocol, for which we provide a complete security

analysis. We first give a rough overview of the protocol in Table 1, and the detailed mathematical

description follows in Section 2.3.

2.1 Overview

The protocol is parametrized as follows. Let k, n ∈ N. Here k and n are the size (in bits) of the raw key

used for parameter estimation and key extraction, respectively. Moreover, let δ ∈ (0, 1
2 ) be the tolerated

error rate. Also define m := n + k as the total length of the raw key, and Πm,k := {π ⊂ [m] : |π| = k},
the set of subsets of [m] of size k.

Fix an error correcting scheme described by a quintuple ec = {r, t, synd, corr,Hec}. Here, r ∈ N is

the length (in bits) of the error correction syndrome, and t ∈ N is then length (in bits) of the hash

used for verification. Moreover, synd and corr are functions of the form synd : {0, 1}n → {0, 1}r and

corr : {0, 1}n × {0, 1}r → {0, 1}n used to compute the error syndrome and calculate the corrected

string, respectively. We do not need to assume anything about the structure of this code.1 Finally,

Hec :=
{
hec : {0, 1}n → {0, 1}t

}
is a universal2 family of hash functions (see Section 4.1.3).

Finally, privacy amplification is characterized by a couple pa = {`,Hpa}, where ` ∈ N with ` ≤ n is

the length (in bits) of the extracted key and Hpa :=
{
hpa : {0, 1}n → {0, 1}`

}
is a universal2 family of

hash functions (see Section 4.1.3).

This allows us to define a family of protocols qkd simplek,n,δ,ec,pa in Table 1. We note that such a

protocol is simply a completely positive trace-preserving map.

2.2 Measurement Devices

We model Alice’s measurements on subsystem Ai for measurement setting φ ∈ {0, 1} by a binary gen-

eralized measurement {Mφ,x
Ai
}x∈{0,1}. Analogously, Bob’s measurements on subsystem Bi is a binary

generalized measurement {Mφ,y
Bi
}y∈{0,1}.

1For example, ecA could be a linear code described by an r×n parity check matrix H such that ecA(x) = Hx. Moreover,

ecB can be any decoder, for example the (optimal) maximum likelihood decoder, but also more practical suboptimal iterative

decoders.
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(KA,KB , S, C, F ) = qkd simplek,n,δ,ec,pa
(
ρAB

)
:

Input: Alice and Bob are given a state ρAB , where A = A[m] and B = B[m] are comprised of m quantum

systems.

Randomization: They agree on a random string Φ ∈ {0, 1}m, a random subset Π ∈ Πm,k, and random

hash functions Hec ∈ Hec as well as Hpa ∈ Hpa. The corresponding uniformly random seeds are

denoted S = (SΦ, SΠ, SHec , SHpa).

Measurement: Alice and Bob measure the m quantum systems with the setting Φ. They store the

binary measurement outcomes in two strings, the raw keys. These are denoted (X,V ) and (Y,W )

for Alice and Bob, respectively. Here V,W are of length k and correspond to the indices in Π,

whereas X,Y of length n correspond to indices not in Π.

Parameter Estimation: Alice sends V to Bob, the transcript is denoted CV . Bob compares V and

W . If the fraction of errors exceeds δ, Bob sets the flag F pe = ‘⊥’ and they abort. Otherwise he

sets F pe = ‘ 6⊥’ and they proceed.

Error Correction: Alice sends the syndrome Z = synd(X) to Bob, with transcript CZ . Bob computes

X̂ = corr(Y, Z).

Alice computes the hash T = Hec(X) of length t and sends it to Bob, with transcript CT . Bob

computes Hec(X̂). If it differs from T , he sets the flag F ec = ‘⊥’ and they abort the protocol.

Otherwise he sets F ec = ‘ 6⊥’ and they proceed.

Privacy Amplification: They compute keys KA = Hpa(X) and KB = Hpa(X̂) of length `.

Output: The output of the protocol consists of the keysKA andKB , the seeds S = (SΦ, SΠ, SHec , SHpa),

the transcript C = (CV , CZ , CH) and the flags F = (F pe, F ec). In case of abort, we assume that

all registers are initialized to a predetermined value.

Table 1: Simple QKD Protocol. The precise mathematical model is to be found in Section 2.3.

The exact description of the measurement devices will not be relevant for our derivations. However,

the following parameter c̄ of Alice’s measurements is important:

ci := max
φ,x,z∈{0,1}

∥∥∥Mφ,x
Ai

(
M φ̄,z
Ai

)†∥∥∥2

∞
, where φ̄ = 1− φ, and c̄ := min

π∈Πm,k

(∏
i∈π̄

ci

) 1
n

,

where the product is taking over the complement π̄ of the set π in [m].

2.3 Mathematical Model of the Protocol

Here we describe in detail the mathematical model underlying the protocol in Table 1.

Input: Alice and Bob are given a state ρAB , where A = A[m] = A1 ⊗ A2 ⊗ . . . ⊗ Am consist of m

quantum systems of arbitrary, finite dimension, B = B[m] = B1 ⊗B2 ⊗ . . .⊗Bm consists of m quantum

systems of arbitrary, finite dimension. Note that apart from the above structure, the state ρAB is fully

general.

Randomization: We model the randomization by random seeds (uniform random variables), shared

between Alice and Bob.

The first random variable is a random basis choice for each quantum system. This is modeled as a
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register SΦ in the state

ρSΦ =
∑

φ∈{0,1}m

1

2m
|φ〉〈φ|SΦ , (6)

where {|φ}φ〉∈{0,1}m is an orthonormal basis of the space SΦ and φ = φ[m] = (φ1, φ2, . . . , φm) with

φi ∈ {0, 1}. The total state at the beginning of the protocol is thus of the form ρABE ⊗ ρSΦ .

The seed for the choice of the random subset is denoted SΠ and is initially in the state

ρSΠ =
∑

π∈Πm,k

1(
m
k

) |π〉〈π|SΠ , (7)

where {|π〉}π∈Πm,k is an orthonormal basis of the space SΠ. For any π ∈ Πm,k, we denote its k elements

by πi, for i ∈ [k] and we denote by π̄ the complement of π ∈ [m].

At this point we reorder the measurement settings in SΦ into two parts: the settings to be used for

measuring quantum systems in π will be stored in a register SΞ and the settings to be used for measuring

the remaining n quantum systems in π̄ will be stored in a register SΘ. Formally, we consider the function

ro : {0, 1}m ×Πm,k → {0, 1}k × {0, 1}n, (φ, π) 7→ (φπ, φπ̄) . (8)

Since SΦ is uniformly random, the resulting state after applying this function and discarding SΦ is of

the form

ρSΠSΞSΘ = trSΦ

{
Ero(ρSΦ ⊗ ρSΠ)

}
= ρSΠ ⊗ ρSΞ ⊗ ρSΘ , (9)

where the registers containing SΞ and SΘ are again uniformly random:

ρSΞ =
∑

ξ∈{0,1}k

1

2k
|ξ〉〈ξ|SΞ and ρSΘ =

∑
θ∈{0,1}n

1

2n
|θ〉〈θ|SΘ (10)

for ξ = ξ[k] = (ξ1, ξ2, . . . , ξk) and θ = θ[n] = (θ1, θ2, . . . , θn) with θi, ξi ∈ {0, 1}.
The choice of the hash function in the family Hec = {hec : {0, 1}n → {0, 1}t} and the choice of hash

function in the family Hpa = {hpa : {0, 1}n → {0, 1}t} are modeled via random seeds

ρSHec =
∑
h∈Hec

1

|Hec|
|h〉〈h|SHec and ρSHpa =

∑
h∈Hpa

1

|Hpa|
|h〉〈h|SHpa . (11)

Measurement: We split the measurement process into two parts, measuring the systems in the set π

and π̄ separately. This will be important for the security analysis later. The first measurement concerns

the registers in π, which are used for parameter estimation. For any subset π ∈ Πm,k, we define a

completely positive trace-preserving mapMπ
A→V |SΞ : AπS

Ξ → V AπS
Ξ where V = V[k] = V1⊗V2⊗ . . . Vk

models k binary classical registers storing the measurement outcomes. The map is given by

Mπ
A→V |SΞ(·) =

∑
ξ∈{0,1}k

∑
v∈{0,1}k

|v〉V
(
Mξ,v
Aπ
⊗ |ξ〉〈ξ|SΞ

)
·
(
Mξ,v
Aπ
⊗ |ξ〉〈ξ|SΞ

)†
〈v|V , (12)

where Mξ,v
Aπ

:=
⊗

i∈[k]M
ξi,vi
Aπi

. This map measures the k subsystems determined by π using the (random)

measurement settings stored in the register SΞ. The results are stored in the classical register V , and

the post-measurement state remains in the systems Aπ.

Similarly, we define Mπ
B→W |SΞ : BπS

Ξ →WBπS
Ξ as

Mπ
B→W |SΞ(·) =

∑
ξ∈{0,1}k

∑
w∈{0,1}k

|w〉W
(
Mξ,w
Bπ
⊗ |ξ〉〈ξ|SΞ

)
·
(
Mξ,w
Bπ
⊗ |ξ〉〈ξ|SΞ

)†
〈w|W , (13)
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where Mξ,w
Bπ

:=
⊗

i∈[k]M
ξi,wi
Bπi

. Clearly the two maps Mπ
A→V |SΞ and Mπ

B→W |SΞ commute and we write

their concatenation as Mπ
A→V |SΞ ◦Mπ

B→W |SΞ =Mπ
B→W |SΞ ◦Mπ

A→V |SΞ .

So far we have considered π to be fixed. The full measurement for parameter estimation instead

consults the register SΠ and is modeled as a mapMAB→VW |SΠSΞ : ABSΠSΞ → ABVWSΠSΞ given by

MAB→VW |SΠSΞ(·) =
∑

π∈Πm,k

Mπ
A→V |SΞ ◦Mπ

B→W |SΞ

(
|π〉〈π|SΠ · |π〉〈π|SΠ

)
(14)

The state of the total system after the measurement required for parameter estimation is thus given by

τABVWSΠSΞSΘ =MAB→VW |SΠSΞ(ρABSΠSΞSΘ) (15)

=
∑

π∈Πm,k

1(
m
k

) |π〉〈π|SΠ ⊗ ρSΘ ⊗ Vπ ◦Wπ
[
ρABSΞ

]
(16)

=
∑

π∈Πm,k

∑
ξ∈{0,1}k

∑
v,w∈{0,1}k

1

2k
(
m
k

) |π, ξ〉〈π, ξ|SΠSΞ ⊗ ρSΘ ⊗

. . . |v, w〉〈v, w|VW ⊗
(
Mξ,v
Aπ
⊗Mξ,w

Bπ

)
ρAB

(
Mξ,v
Aπ
⊗Mξ,w

Bπ

)†
. (17)

The second measurement concerns the quantum systems used for extracting the secret key. The

corresponding measurement maps are defined analogously to the measurements maps above, but now

act on the systems determined by π̄, the complement of π in [m]. We define

MA→X|SΠSΘ(·) =
∑

π∈Πm,k

∑
θ,x∈{0,1}n

|x〉X
(
Mθ,x
Aπ̄
⊗ |π, θ〉〈π, θ|SΠSΘ

)
·
(
Mθ,x
Aπ̄
⊗ |π, θ〉〈π, θ|SΠSΘ

)† 〈x|X ,
(18)

MB→Y |SΠSΘ(·) =
∑

π∈Πm,k

∑
θ,y∈{0,1}n

|y〉Y
(
Mθ,y
Bπ̄
⊗ |π, θ〉〈π, θ|SΠSΘ

)
·
(
Mθ,y
Bπ̄
⊗ |π, θ〉〈π, θ|SΠSΘ

)† 〈y|Y
(19)

as well asMAB→XY |SΠSΘ =MA→X|SΘSθ ◦MB→Y |SΠSΘ . It is evident that all measurementsM defined

so far mutually commute. Finally, we define the total measurement map as MAB→VWXY |SΠSΞSΘ :=

MAB→VW |SΠSΞ ◦MAB→XY |SΠSΘ .

Of particular interest is the state of the system after measurement and after we discard the quantum

systems. This is given by a classical state σVWXY SΠSΞSΘ . This state is of the form

σVWXY SΠSΞSΘ (20)

= trAB
(
MAB→VWXY |SΠSΞSΘ(ρABSΠSΞSΘ)

)
(21)

= trAB
(
MAB→XY |SΠSΘ(τABVWSΠSΞSΘ)

)
(22)

=
∑

π∈Πm,k

∑
ξ∈{0,1}k
θ∈{0,1}n

∑
v,w∈{0,1}k
x,y∈{0,1}n

1

2m
(
m
k

) |π, ξ, θ〉〈π, ξ, θ|SΠSΞSΘ ⊗ |v, w, x, y〉〈v, w, x, y|VWXY ⊗

. . . trAB

{(
M̃ξ,v
Aπ
⊗ M̃θ,x

Aπ̄
⊗ M̃ξ,w

Bπ
⊗ M̃θ,y

Bπ

)
ρAB

}
, (23)

where we write M̃ξ,v
Aπ

=
(
Mξ,v
Aπ

)†
Mξ,v
Aπ

and analogously introduce M̃θ,x
Aπ̄

, M̃ξ,w
Bπ

and M̃θ,y
Bπ

.

Parameter Estimation: We model parameter estimation by a test function acting on the registers

V and W and creating a binary flag F pe as follows:

pe : {0, 1}k ⊗ {0, 1}k → {⊥, 6⊥}, pe(v, w) =

{
⊥ if

∑
i∈[k] 1{vi 6= wi} ≥ kδ

6⊥ otherwise
. (24)

This test can be applied to the states τABVWSΠSΞSΘ or σVWXY SΠSΞSΘ defined previously.
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Step Input State Output State

Input: ρAB
Randomization: ρSΦ ⊗ ρSΠ ⊗ ρSHec ⊗ ρSHpa

Measurement: ρAB ⊗ ρSΦ ⊗ ρSΠ 7→ σVWXYABSΦSΠ

Parameter Estimation: σVW 7→ σCV Fpe

Error Correction: σXY ⊗ ρSHec 7→ σXX̂CZF ec

Privacy Amplification: σXX̂ ⊗ ρSHpa 7→ ωKAKBCH

Output: ωKAKBSCF

Table 2: Evolution of the registers during the execution of the simple QKD Protocol.

We are specifically interested in the state τABVWSΠSΞSΘFpe = Epe

[
τABVWSΠSΞSΘ

]
and the corre-

sponding state conditioned on the outcome F pe = 6⊥, given by

τABVWSΠSΞSΘ|Fpe=6⊥ =
1

Prτ [F pe = 6⊥]

∑
π∈Πm,k

∑
ξ∈{0,1}k

∑
v,w∈{0,1}k∑k

i=1
1{vi 6=wi}<kδ

1

2k
(
m
k

) |π, ξ〉〈π, ξ|SΠSΞ ⊗

. . . ρSΘ ⊗ |v, w〉〈v, w|VW ⊗
(
Mξ,v
Aπ
⊗Mξ,w

Bπ

)
ρAB

(
Mξ,v
Aπ
⊗Mξ,w

Bπ

)†
. (25)

We will see that this state is crucial for the security analysis in the next section. Finally, we note that

MXY and Epe commute, and thus in particular we find that

trAB
(
MAB→XY |SΠSΘ(τABVWSΠSΞSΘ|Fpe=6⊥)

)
= σVWXY SΠSΞSΘ|Fpe=6⊥, where (26)

σVWXY SΠSΞSΘFpe = Epe(σVWXY SΠSΞSΘ) . (27)

We also relabel V to CV and keep it around as part of the transcript, while we discard W after

performing parameter estimation.

Error Correction: Alice computes the syndrome Z = synd(X) and sends it to Bob. Bob then

computes X̂ = corr(Y,Z).

Alice and Bob then need to check that the decoding procedure succeeded. The simplest strategy is

to compare hashes of their respective strings x and x̂ and abort the protocol if they differ.

Alice computes a hash of size t (in bits) of x and sends it to Bob, who computes the corresponding

hash for x̂. If both hashes differ, Bob sends the flag ‘⊥ec’ to Alice. Alice and Bob will then output ‘⊥ec’

and abort the protocol. Otherwise Bob sends ‘6⊥ec’ to Alice and they proceed.

This test is modeled as a classical map ec acting on registers X, X̂ and SHec creating a transcript of

the hash value CT and a binary flag F ec as follows:

ec : {0, 1}n × {0, 1}n ×Hec → {0, 1}t × {⊥, 6⊥}, (x, x̂) 7→

{
(hec(x),⊥) if hec(x) 6= hec(x̂)

(hec(x), 6⊥) otherwise
. (28)

The classical functions are modeled using CPTP maps Esynd, Ecorr, as well as Eec.

Applying these maps to the state σXY CV SΠSΞSΘFpe yields

σXX̂CV CZCTSΠSΞSΘSHecFpeF ec = trY

(
Eec ◦ Ecorr ◦ Esynd (σXY CV SΠSΞSΘFpe ⊗ ρSHec )

)
, (29)

where the transcript register CZ contains the value of the syndrome and CT the output of Alice’s hash.

Privacy Amplification: Alice and Bob use the seed Hpa to choose a hash function, which they then

both apply on their raw key to compute KA = Hpa(X) and KB = Hpa(X̂), their respective keys.

Formally, the privacy amplification map is defined as:

pa :

{
{0, 1}n × {0, 1}n ×Hpa → {0, 1}l × {0, 1}l

(x, x̂, hpa) 7→ (hpa(x), hpa(x̂))
(30)
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(KA,KB , S, C, F ) = qkd idealk,n,δ,ec,pa
(
ρAB

)
:

Run protocol: Set (KA,KB , S, C, F ) = qkd simplek,n,δ,ec,pa(ρAB).

Output: If F pe = F ec = ‘ 6⊥’, then replace KA and KB by an independent and uniformly distributed

random variable K, i.e. set KA = KB = K.

Table 3: Ideal QKD Protocol.

Denoting by KA and KB the respective key spaces of Alice and Bob, the final quantum state is

ωKAKBECSF = trXX̂
(
Epa(σXX̂ECSF ⊗ ρSHpa )

)
. (31)

3 Security Definition and Results

Security is defined with regards to an ideal protocol, which is defined in Table 3. Note in particular that

an ideal protocol is allowed to abort, but it will always output a uniformly random shared key in case it

does not.

For a detailed discussion of the security of quantum key distribution, we refer the reader to [3]. For

our purposes, it suffices to show that

∆k,n,δ,ec,pa :=
1

2

∥∥qkd simplek,n,δ,ec,pa − qkd idealk,n,δ,ec,pa

∥∥
� (32)

= sup
ρABE

1

2

∥∥qkd simplek,n,δ,ec,pa(ρABE)− qkd idealk,n,δ,ec,pa(ρABE)
∥∥

1
(33)

is very small for certain choices of parameters k, n, δ, ec and pa. In the latter expression ρABE ∈ S(ABE)

is an arbitrary extension of ρAB to a finite-dimensional system E. (Note that the restriction to finite-

dimensional E is not restrictive if AB is finite-dimensional, since the diamond norm of a trace-annihilating

map is achieved by quantum states with E of the same dimension as AB.)

Let us now fix ρABE . The trace distance in (33) can be simplified by noting that the output of

qkd ideal equals the output of qkd simple if the protocol aborts. We find∥∥qkd simplek,n,δ,ec,pa(ρABE)− qkd idealk,n,δ,ec,pa(ρABE)
∥∥

1

=
∥∥ωKAKBSCFE,Fpe=F ec=‘ 6⊥’ − χKAKB ⊗ ωSCFE,Fpe=F ec=‘ 6⊥’

∥∥
1

(34)

= Pr
[
F pe = F ec = ‘6⊥’

]
ω
·
∥∥ωKAKBSCE|Fpe=F ec=‘6⊥’ − χKAKB ⊗ ωSCE|Fpe=F ec=‘ 6⊥’

∥∥
1
, (35)

where we use ωKAKBSCFE = qkd simplek,n,δ,ec,pa(ρABE) and define

χKAKB :=
1

2`

∑
k∈{0,1}`

|k〉〈k|KA ⊗ |k〉〈k|KB . (36)

The goal of in the following is to bound (35) uniformly in ρABE , which implies an upper bound

on (33) as well. In order to do this we will employ the following lemma which allows us to split the norm

into two terms corresponding to correctness and secrecy. (See Portmann et al. [3] for a proof.)

Lemma 1. If, for every state ρABE, we have

Pr[KA 6= KB ∧ F pe = F ec = 6⊥]ω ≤ εec and (37)

Pr
[
F = ( 6⊥, 6⊥)

]
ω
· 1

2

∥∥ωKASCFE|F= ( 6⊥,6⊥) − χKA ⊗ ωSCFE|F= ( 6⊥,6⊥)

∥∥
1
≤ εpa . (38)

Then, ∆k,n,δ,ec,pa ≤ εec + εpa.
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The first statement of the above lemma corresponds to correctness, and the second one to secrecy.

If both are satisfied, we say that the protocol is secure. We will show the following theorems. The first

theorem establishes correctness of the protocol.

Theorem 2. Let n, k, δ, ec,pa be defined as in Section 2.1. Then for every state ρABE and ωKAKBSCFE =

qkd simplek,n,δ,ec,pa(ρABE) we have

Pr[KA 6= KB ∧ F = ( 6⊥, 6⊥)]ω ≤ εec := 2−t . (39)

The second theorem asserts secrecy.

Theorem 3. Let n, k, δ, ec,pa be defined as in Section 2.1. Define

εpa(ν) := 2−
1
5

(
n log 1

c̄−nh(δ+ν)−r−t−`
)
, (40)

where h is the binary entropy function (cf. Prop. 8). If εpa(0) < 1, define ν∗ as the unique solution of

the equality

εpa(ν) = exp

(
− nk2ν2

2(n+ k)(k + 1)

)
. (41)

If, furthermore, this solution satisfies εpa(ν∗) ≤ 1
4 , then, for every state ρABE and ωKAKBSCFE =

qkd simplek,n,δ,ec,pa(ρABE), we have

Pr
[
F = ( 6⊥, 6⊥)

]
ω
· 1

2

∥∥ωKASCFE|F= ( 6⊥,6⊥) − χKA ⊗ ωSCFE|F= ( 6⊥,6⊥)

∥∥
1
≤ εpa(ν∗) . (42)

Remark 1. Note that εpa(0) < 1 is a necessary condition for security. The additional constraint,

εpa(ν∗) ≤ 1
4 was added since it allows us to simplify the presentation of the result, and it will always be

satisfied in realistic settings where this term is expected to be exponentially small in n.

4 The Security Proof

The purpose of this section is to proof Theorems 2 and 3.

4.1 Technical Ingredients

Here we overview the main technical ingredients for our proof.

4.1.1 Smooth Rényi Entropies

We use the following definitions. The min- and max-entropy are natural generalization of conditional

Rényi entropies [5] to the quantum setting. They were first proposed by Renner [4] and König–Renner–

Schaffner [2], respectively.

Definition 1 (Min and Max-Entropy). For any bipartite state ρAB ∈ S•(AB), we define

Hmin(A|B)ρ := sup
{
λ ∈ R : ∃σB ∈ S(B) such that ρAB ≤ 2−λidA ⊗ σB ,

}
(43)

Hmax(A|B)ρ := sup
σB∈S(B)

log
(

tr
√√

ρAB(idA ⊗ σB)
√
ρAB

)2

, (44)

which are called the min- and max-entropy of A conditioned on B, respectively.

The following metric is very useful when dealing with sub-normalized states [8]:
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Definition 2 (Purified distance). For ρA, σA ∈ S•(A), we define

F (ρA, σA) :=
(

tr
√√

ρAσA
√
ρA +

√
1− tr(ρA)

√
1− tr(σA)

)2

, (45)

P (ρA, σA) :=
√

1− F (ρA, σA), (46)

which are called the generalized fidelity and the purified distance, respectively.

In particular, the purified distance is a metric on sub-normalized states and satisfies [8, Lem. 2]

P (ρA, σA) ≥ P
(
F(ρA),F(σA)

)
(47)

for every trace non-increasing completely positive map F . This means that the distance contracts when

we apply a quantum channel to both states. Finally, we note that [8, Lem. 6]

1

2

∥∥ρA − σA∥∥1
+

1

2

∣∣ tr(ρA)− tr(σA)
∣∣ ≤ P (ρA, σA) . (48)

Based on this metric, we define the smooth min- and max-entropy.

Definition 3 (Smooth Entropies). For ρAB ∈ S•(AB) and ε ∈
[
0,
√

tr(ρAB)
)

, we define

Hε
min(A|B)ρ := max

ρ̃AB∈S•(AB),

P (ρ̃AB,ρAB)≤ε

Hmin(A|B)ρ̃, Hε
max(A|B)ρ := min

ρ̃AB∈S•(AB),

P (ρ̃AB,ρAB)≤ε

Hmax(A|B)ρ̃ . (49)

The smooth entropies satisfy a duality relation [8]. For any pure state ρABC , we have

Hε
min(A|B)ρ = −Hε

max(A|C)ρ . (50)

They also satisfy a data-processing inequality (DPI) [8, Thm. 18]. For any state ρAB and any completely

positive trace-preserving map EB→C , we have

Hε
min(A|B)ρ ≤ Hε

min(A|C)E(ρ), and Hε
max(A|B)ρ ≤ Hε

max(A|C)E(ρ) . (51)

We also need a simple chain rule [13, Lem. 11], which states that

Hε
min(A|BX)ρ ≥ Hε

min(A|B)ρ − log |X| (52)

where X is a (classical) register of dimension |X|. Finally, we note that

Hmax(X)ρ ≤ log
∣∣{x ∈ X : Pr

ρ
[X = x] > 0}

∣∣ (53)

by the monotonicity of the Rényi entropies [5]. A more extensive review of the smooth entropy calculus

can be found in [7] and in [?].

4.1.2 Entropic Uncertainty Relation

We state the uncertainty relation in a natural form applied to the situation at hand. This relation forms

the core technical ingredient of our security proof [7, Cor. 7.4].

Theorem 4. Let τABCP ∈ S(ABCP ) be an arbitrary state with P a classical register. Furthermore,

let ε ∈ [0, 1) and let q be a bijective function on P that is a symmetry of ρABCP in the sense that

ρABC,P=p = ρABC,P=q(p) for all p ∈ P . Then, we have

Hε
min(X|CP )σ +Hε

max(X|BP )σ ≥ log
1

cq
, where (54)

where cq = maxp∈P maxx,z∈X
∥∥F q(p),xA

(
F p,zA

)†∥∥2

∞. Here, σXBCP =MA→X|P (τABCP ) for the map

MA→X|P
[
·
]

= trA

(∑
p∈P

∑
x∈X
|x〉X

(
|p〉〈p|P ⊗ F

p,x
A

)
·
(
|p〉〈p|P ⊗ F

p,x
A

)†
〈x|X

)
. (55)

and any set (indexed by p ∈ P ) of generalized measurements {F p,xA }x∈X .
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This uncertainty relation was first shown in [7], based on the techniques introduced in [10]. The differ-

ence to [7, Cor. 7.4] is that we here account for general measurements, whereas previous bounds assumed

that F p,xA ≥ 0. We provide a full proof of the uncertainty relation in Appendix A for completeness.

4.1.3 Universal2 Hashing and Leftover Hashing Lemma

Universal hashing is used twice in the analysis of the quantum key distribution protocol: first in the

error correction step to ensure the correctness of the protocol (Theorem 2), and then in the privacy

amplification procedure to guarantee the secrecy of the final key.

Definition 4 (Universal2 Hashing). Let H = {h} be a family of functions from X to Z. The family H
is said to be universal2 if Pr [H(x) = H(x′)] ≤ 1

|Z| for any pair of distinct elements x, x′ ∈ X , when h is

chosen uniformly at random in H.

In this work we do not need to specify any particular family of hash functions, and it suffices to note

that such families of functions always exist if |X | and |Z| are powers of 2. (See, e.g., [1, 12].)

We now state a version of the Leftover Hashing Lemma is, up to a slight change of the definition of

the smooth min-entropy, due to Renner [4, Corr. 5.6.1]. The proof of this exact statement is provided in

Appendix B for the convenience of the reader.

Theorem 5. Let σXE′ , σ̃XE′ ∈ S•(XE′) be a classical-quantum state and let H be a universal2 family

of hash functions from {0, 1}n to {0, 1}`. Moreover, let ρSH =
∑
h∈H

1
|H| |h〉〈h|SH be fully mixed. Then,

‖ωKSHE′ − χK ⊗ ωSHE′‖1 ≤ 2−
1
2 (Hmin(X|E′)σ̃−`) + 2‖σXE′ − σ̃XE′‖1 (56)

where χK = 1
2`

idK is the fully mixed state and ωKSHE′ = trX
(
Ef (σXE′ ⊗ ρSH )

)
for the function

f : (x, h) 7→ h(x) that acts on the registers X and SH .

4.2 Correctness: Proof of Theorem 2

We wish to upper bound the probability of the protocol not aborting and outputting distinct final keys

for Alice and Bob.

Proof of Theorem 2. We consider the following chain of inequalities:

Pr
ω

[KA 6= KB ∧ F pe = F ec = 6⊥] ≤ Pr
ω

[KA 6= KB ∧ F ec = 6⊥] (57)

= Pr
ω

[Hpa(X) 6= Hpa(X ′) ∧Hec(X) = Hec(X ′)] (58)

≤ Pr
σ

[X 6= X ′ ∧Hec(X) = Hec(X ′)] (59)

= Pr
σ

[X 6= X ′] Pr
σ

[Hec(X) = Hec(X ′) |X 6= X ′] (60)

≤ Pr
σ

[Hec(X) = Hec(X ′) |X 6= X ′] (61)

≤ |Hec|−1 = 2−t. (62)

The first inequality follows since we ignore the status of the flag F pe. The second inequality is a

consequence of the fact X = X ′ implies Hpa(X) = Hpa(X ′). The third inequality follows since Pr[X 6=
X ′] ≤ 1 and the last one by definition of universal2 hashing.

4.3 Measurement Uncertainty: Bound on Smooth Min-Entropy

The crucial bound on the smooth entropy of Alice’s measurement outcomes follows by the entropic

uncertainty relation, suitably applied.
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Proposition 6. Consider the state σXY VWSΠSΞSΘFpeE as in (27) after measurement and parameter

estimation. Let ε ∈ [0, 1). Then, with c̄ defined in (6), we have

Hε
min(X|VWSΠSΞSΘE,F pe = 6⊥)σ +Hε

max(X|Y, F pe = 6⊥)σ ≥ n log
1

c̄
. (63)

Proof. Consider the state τABVWSΠSΞSΘFpeE|Fpe=6⊥ defined in (25) and note that it is of the form

τABVWSΠSΞSΘFpeE|Fpe=6⊥ = τABVWSΠSΞFpeE|Fpe=6⊥ ⊗ ρSΘ . (64)

This is the state of the system after parameter estimation and after measuring V and W , but with the

measurement of X and Y (in the basis determined by Θ) delayed.

Let us now apply Theorem 4 to this state. For this purpose we equate C = VWEF pe and P =

SΠSΞSΘ. The symmetry is determined by the map q : θ 7→ θ̄ with θ̄i = 1 − θi, which only acts on SΘ.

The measurement map is then simply MA→X|SΠSΘ and we can calculate

cq = max
π∈Πm,k

max
θ,x,z∈{0,1}n

∥∥∥M θ̄,x
Aπ̄

(
Mθ,z
Aπ̄

)†∥∥∥2

∞
= max
π∈Πm,k

(∏
i∈π̄

ci

)
= c̄n . (65)

Theorem 4 applied to our setup thus yields

Hε
min(X|VWESΠSΞSΘ, F pe = 6⊥)σ +Hε

max(X|BSΠSΞSΘ, F pe = 6⊥)τ ≥ n log
1

c̄
(66)

Finally, the statement of the Proposition follows by applying the measurement map MB→Y |SΠSΘ and

noting that Hε
max(X|BSΠSΞSΘ, F pe = 6⊥)τ ≤ Hε

max(X|Y, F pe = 6⊥)σ by the data-processing inequality.

Remark 2. Observe that the right hand side of (66) can be further bounded as

n log
1

c̄
= min
π∈Πm,k

(∑
i∈π̄

log
1

ci

)
≥ n log

1

ĉ
, where ĉ = max

π∈Πm,k

(
1

n

∑
i∈π̄

ci

)
. (67)

using the concavity of the logarithm function (or the arithmetic-geometric mean inequality).

4.4 Parameter Estimation: Statistical Bounds on Smooth Max-Entropy

This section covers the necessary statistical analysis. This replicates the analysis in [9], but we are more

careful in working out the details here. We will use the following tail bound.

Lemma 7. Consider a set of binary random variables Z = (Z1, Z2, . . . , Zm) with Zi taking values in

{0, 1} and m = n+ k. Let Π ∈ Πm,k be an independent, uniformly distributed random variable. Then,

Pr

[∑
i∈Π

Zi ≤ kδ ∧
∑
i∈Π̄

Zi ≥ n(δ + ν)

]
≤ exp

(
− 2ν2 nk2

(n+ k)(k + 1)

)
(68)

Remarkably this bound is valid without any assumptions on the distribution of Z.

Proof. Let µ(z) = 1
m

∑
i∈[m] zi. Consider the following sequence of inequalities:

Pr

[
1

k

∑
i∈Π

Zi ≤ δ ∧
1

n

∑
i/∈Π

Zi ≥ δ + ν

]
≤ Pr

[
1

n

∑
i∈Π̄

Zi ≥
1

k

∑
i∈Π

Zi + ν

]
(69)

=
∑

z∈{0,1}m
Pr[Z = z] Pr

[
1

n

∑
i∈Π̄

zi ≥
1

k

∑
i∈Π

zi + ν

]
(70)

=
∑

z∈{0,1}m
Pr[Z = z] Pr

[
1

n

∑
i∈Π̄

zi ≥ µ(z) +
kν

m

]
. (71)
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Here, the first inequality holds since A =⇒ B implies Pr[A] ≤ Pr[B] for any events A and B. The

first equality follows from the fat that Π is independent of Z. The last equality follows by substituting∑
i∈Π zi = mµ(z)−

∑
i∈Π̄ zi and rearranging the terms appropriately.

Now note that the random sums Sn :=
∑
i∈Π̄ zi can be seen as emanating from randomly sampling

without replacement n balls labelled by zi ∈ {0, 1} from a population z with mean µ(z). Serfling’s

bound [6, Cor. 1.1] then tells us that

Pr

[
1

n
Sn ≥ µ(z) +

kν

m

]
≤ exp

(
− 2n

(
kν

m

)2
1

1− f∗n

)
= exp

(
− 2ν2 nk2

(n+ k)(k + 1)

)
. (72)

where we substituted f∗n = n−1
m . It is important to note that this bound is independent of µ(z). Thus,

substituting this back into (71), we conclude the proof.

With this in hand, we wish to bound the smooth max-entropy of the state conditioned on passing

the parameter estimation test.

Proposition 8. For any ν ∈ (0, 1), define

ε(ν) := exp

(
− nk2ν2

(n+ k)(k + 1)

)
. (73)

Consider any state σXY F pe as in (27) after measurement and parameter estimation. For any ν ∈ (0, 1
2−δ],

we set p = Prσ[F pe = 6⊥] and ε′ = ε(ν)/
√
p. Then, the following implication is true:

p > ε(ν)2 =⇒ Hε′

max(X|Y, F pe = 6⊥)σ ≤ nh(δ + ν) , (74)

where h : x 7→ −x log x− (1− x) log(1− x) is the binary entropy.

Roughly speaking, this result is a consequence of that fact that, conditioned on any particular value

of Y , the support of X is restricted since the number of errors (positions where xi 6= yi) is bounded when

we pass the parameter estimation test with sufficiently high probability.

Proof. We use the shorthand ε = ε(ν). We show that the second statement holds if we assume p > ε2.

Using Lemma 7 below, we find

Pr
σ

[
F pe = 6⊥ ∧

∑
i∈[n]

1{Xi 6= Yi} ≥ n(δ + ν)

]
(75)

= Pr
σ

[ ∑
i∈[k]

1{Vi 6= Wi} ≤ kδ ∧
∑
i∈[n]

1{Xi 6= Yi} ≥ n(δ + ν)

]
≤ ε2 (76)

Thus, using Bayes’ rule, we conclude that the event Ω = 1
{∑

i∈[n] 1{Xi 6= Yi} ≥ n(δ + ν)
}

satisfies

Pr
σ

[
Ω
∣∣F pe = 6⊥

]
≤ ε2

p
(77)

Now consider the state σ̃XY Fpe = σ̃XY ⊗ |6⊥〉〈6⊥|Fpe determined by the relation

Pr
σ̃

[X = x, Y = y] =

{
Prσ [X=x,Y=y|Fpe= 6⊥]

1−Prσ [Ω|Fpe= 6⊥] if
∑
i∈[n] 1{xi 6= yi} < n(δ + ν)

0 else
. (78)
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This state is close to σXY Fpe|Fpe= 6⊥ as we will see in the following. We evaluate√
F (σXY Fpe|Fpe= 6⊥, σ̃XY Fpe) (79)

=
∑

x,y∈{0,1}n

√
Pr
σ̃

[X = x, Y = y] Pr
σ

[X = x, Y = y|F pe = 6⊥] (80)

=
∑

x,y∈{0,1}n
1

{∑
i∈[n]

1{xi 6= yi} < n(δ + ν)

}
Prσ[X = x, Y = y |F pe = 6⊥]√

1− Prσ[Ω |F pe]
(81)

=
√

1− Pr
σ

[Ω |F pe] ≥

√
1− ε2

p
. (82)

In the last step we used (77). From this we conclude that P (σXY Fpe|Fpe= 6⊥, σ̃XY Fpe) ≤ ε′, and, as a

consequence Hε′

max(X|Y, F pe = 6⊥)σ ≤ Hmax(X|Y F pe)σ̃ = Hmax(X|Y )σ̃.

Finally, it remains to show that Hmax(X|Y )σ̃ ≤ nh(δ + ν). We have

Hmax(X|Y )σ̃ = log

( ∑
y∈{0,1}n

2Hmax(X|Y=y)σ̃

)
(83)

≤ max
y∈{0,1}n

log
∣∣∣{x ∈ {0, 1}n : Pr

σ̃
[X = x|Y = y] > 0

}∣∣∣ . (84)

Here we used that the Rényi entropy is upper bounded by the logarithm of the distribution’s support [5].

The ultimate inequality, which states that

log
∣∣∣{x ∈ {0, 1}n : Pr

σ̃
[X = x|Y = y] > 0

}∣∣∣ ≤ nh(δ + ν), (85)

follows from a combinatoric argument in Claim 9 below.

Claim 9. Inequality (85) holds.

Proof. Note that by definition of σ̃XY , we have∣∣∣{x ∈ {0, 1}n : Pr
σ̃

[X = x|Y = y] > 0
}∣∣∣ ≤ ∑

x∈{0,1}n
1

{∑
i∈[n]

1{xi 6= yi} < n(δ + ν)

}
(86)

=
∑

e∈{0,1}n
1

{ n∑
i=1

ei < n(δ + ν)

}
(87)

=

n∑
λ=0

(
n

λ

)
1
{
λ < n(δ + ν)

}
=

bn(δ+ν)c∑
λ=0

(
n

λ

)
(88)

Here, in order to derive (87) we reparametrize ei = xi xor yi, indicating if there is an error at the i-th

position. Finally, in (88) we substitute λ =
∑n
i=1 ei, the total number of errors.

The inequality
∑bn(δ+ν)c
λ=0

(
n
λ

)
≤ 2nh(δ+ν) (see, e.g., [11, Sec. 1.4]) then concludes the proof.

4.5 Secrecy: Proof of Theorem 3

Once Propositions 6 and 8 are established, the proof of Theorem 3 essentially follows by an application

of the Leftover Hashing Lemma and a few technical ingredients. The following lemma allows us to bound

the smooth min-entropy when conditioning on events.

Lemma 10. Let ε ∈ [0, 1), let σABXY ∈ S(ABXY ) be a state that is classical on X and Y and let Ω be

an event on X and Y . Then, if p = Prσ[Ω] > ε, there exists a state σ̃ABXY such that

1

2

∥∥σ̃ABXY − σABXY |Ω∥∥ ≤ ε

p
and Hmin(AX|BY )σ̃ ≥ Hε

min(AX|BY )σ − log
1

p− ε
. (89)
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Proof. We assume that p > ε and let λ = Hε
min(AX|BY )σ. By the definition of the min-entropy, there

exists states σ̄AXBY and τBY such that σ̄AXBY ≤ 2−λidAX⊗τBY and P (σ̄AXBY , σAXBY ) ≤ ε. Moreover,

without loss of generality [7, Prop. 5.8] we can assume that σ̄AXBY is classical and X and Y .

Define σ̃AXBY = σ̄AXBY |Ω and set p̃ = Prσ̄[Ω]. Since σ̄AXBY |Ω ≤ 1
p̃ σ̄AXBY we immediately find

Hmin(AX|BY )σ̃ ≥ Hε
min(AX|BY )σ − log

1

p̄
≥ Hε

min(AX|BY )σ − log
1

p− ε
(90)

Furthermore, by the monotonicity of the purified distance under trace non-increasing maps, we have

ε ≥ P (σ̄AXBY , σAXBY ) (91)

≥ P (p̄ · σ̄AXBY |Ω, p · σAXBY |Ω) (92)

≥ 1

2

∥∥p̄ · σ̄AXBY |Ω − p · σAXBY |Ω∣∣1 +
1

2
|p̄− p| (93)

=
1

2

∥∥p(σ̄AXBY |Ω − σAXBY |Ω)− (p− p̄)σ̄AXBY |Ω
∥∥

1
+

1

2

∥∥(p− p̄)σ̄AXBY |Ω
∥∥

1
(94)

≥ 1

2
p
∥∥σ̄AXBY |Ω − σAXBY |Ω∥∥1

, (95)

where the last inequality follows by the reverse triangle inequality of the trace norm. Hence we have

established that 1
2

∥∥σ̃ABXY − σABXY |Ω∥∥ ≤ ε
p , concluding the proof.

Let us first proof the following technical statement, of which Theorem 3 will be a corollary.

Proposition 11. Define ε(ν) as in Proposition 8 with ν ∈ (0, 1
2 − δ) large enough such that ε(ν) ≤ 2−4.

Then, the state ωKAKBSCFE = qkd simplek,n,δ,ec,pa(ρABE) satisfies

Pr
ω

[
F = ( 6⊥, 6⊥)

]
· 1

2

∥∥∥ωKASCFE|F= ( 6⊥,6⊥) − χKA ⊗ ωSCFE|F= ( 6⊥,6⊥)

∥∥∥
1

(96)

≤ max

{√
ε(ν), ε(ν) +

√
2−g(ν)

ε(ν)
1
2

}
, (97)

where g(ν) := n log 1
c̄ − nh(δ + ν)− r − t− `.

Proof. Combining Propositions 6 and 8, we have that either

p = Pr
σ

[F pe = 6⊥] ≤
√
ε(ν) or Hε′

min(X|VWSΠSΞSΘE,F pe = 6⊥)σ ≥ nq , (98)

where we set ε′ = ε(ν)/
√
p using the notation of , and q = log 1

c̄ −h(δ+ ν). In particular, ε(ν) is defined

as in (73) with ν ∈ (0, 1
2 − δ]. In the first case we directly conclude that indeed

Pr
ω

[F pe = F ec = 6⊥] ≤
√
ε(ν) . (99)

and the statement of the proposition thus holds.

In the second case, since p >
√
ε(ν), we have that ε′ ∈ (0, ε(ν)3/4) and the smooth min-entropy is

thus well-defined. The following chain of inequalities holds:

nq ≤ Hε′

min(X|SΠSΞSΘCV E,F pe = 6⊥)σ (100)

≤ Hε′

min(X|SΠSΞSΘCV CZE,F pe = 6⊥)σ + r (101)

= Hε′

min(X|SΠSΞSΘSHecCV CZE,F pe = 6⊥)σ⊗ρ + r (102)

≤ Hε′

min(X|SΠSΞSΘSHecCV CZCTF ecE,F pe = 6⊥)σ + r + t+ 1 (103)

These inequalities cover the error correction step of the protocol. The first inequality follows by relabelling

V to CV and discarding W , an instance of the data-processing inequality. The transcript register CZ
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contains the syndrome sent from Alice to Bob and the inequality (101) follows by the chain rule in (52),

and the fact that log |CZ | = r. The register SHec in the state ρSHec is independent of σ. Finally, the

register CT contains the hash of the raw key X and F ec is a binary flag indicating whether the error

correction step succeeded. The last inequality (103) then follows again from (52) and the fact that

log |CT | = t. Summarizing S′ = (SΠ, SΞ, SΘ, SHec) as well as C = (CV , CZ , CT ), and F = (F pe, F ec) as

usual, we can thus write

Hε′

min(X|S′CFE,F pe = 6⊥)σ ≥ nq − r − t− 1 . (104)

We now want to condition on the event F ec = 6⊥ that the error correction step succeeds. For later

convenience, let us introduce the notation p′ = Pr[F ec = 6⊥ |F pe = 6⊥]. Lemma 10 now reveals that either

p′ ≤
√
ε(ν) and, thus, (99) and the statement of the proposition holds, or there exists a state σ̃XS′CFE

such that

1

2

∥∥σ̃XS′CFE − σXS′CFE|F= ( 6⊥,6⊥)

∥∥
1
≤ ε′

p′
≤ ε(ν)

p′p
and (105)

Hmin(X|S′CFE)σ̃ ≥ nq − r − t− 1− log
1

p′ − ε′
≥ nq − r − t− 1− log

2

ε(ν)
1
2

. (106)

To simplify the second line, we used that p′ − ε′ >
√
ε(ν)

(
1 − ε(ν)

1
4
)
≥ 1

2

√
ε(ν), using the assumption

that ε(ν) ≤ 2−4 in the last step.

Finally, we want to apply Theorem 5 to the state σXS′CFE|F=(6⊥,6⊥) and the seed ρSHpa . This covers

the final protocol step, privacy amplification. Theorem 5 reveals that

1

2

∥∥ωKASCFE|F= ( 6⊥,6⊥) − χKA ⊗ ωSCFE|F= ( 6⊥, 6⊥)

∥∥
1
≤ 1

2
2−

1
2 (Hmin(X|S′CFE)σ̃−`) +

ε(ν)

p′p
(107)

≤

√
2−(nq−r−t−`)

ε(ν)
1
2

+
ε(ν)

p′p
(108)

Note in particular that the map Ef defined in Theorem 5 exactly correspond to the privacy amplification

step in Section 2.3, marginalized to Alice’s system.

Proof of Theorem 3. We use the notation of Proposition 11. Define the function q(ν) = 5
2 log 1

ε(ν) which

satisfies q(0) = 0 and is strictly monotonically increasing in ν. On the other hand, g(ν) is strictly

monotonically decreasing in ν and clearly satisfies g( 1
2 − δ) < 0. Hence, if g(0) > 0 (as in the assumption

of the theorem), then there exists a point ν∗ ∈ (0, 1
2 − δ) such that ε(ν∗) = 2−

2
5 g(ν∗).

We now plug this solution into the statement of Proposition 11. We find

Pr
ω

[
F = ( 6⊥, 6⊥)

]
· 1

2

∥∥∥ωKASCFE|F= ( 6⊥,6⊥) − χKA ⊗ ωSCFE|F= ( 6⊥,6⊥)

∥∥∥
1
≤ max

{√
ε(ν∗), 2ε(ν∗)

}
(109)

≤
√
ε(ν∗), (110)

where in the last step we exploited the assumption that ε(ν∗) ≤ 2−4. Hence, the statement of the

theorem follows by substituting εsec(ν) =
√
ε(ν).

Part II

Prepare-And-Measure Protocol

In this part, we discuss a more realistic prepare-and-measure (PM) version of the QKD protocol, es-

sentially BB84 [?], and prove that its security follows from that of the idealized protocol, provided that

some additional assumptions are made.

We first describe the realistic version of the protocol in Section 5 and establish its security in Section 6.
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(KA,KB , S, C, F ) = qkd PMM,k,n,δ,ec,pa
(
NA→B

)
:

Input: Alice and Bob have access to a quantum channel NA→B : A→ B where A = A[M ] and B[M ] are

comprised of M quantum systems.

Randomization: Alice and Bob respectively choose two random strings ΦA,ΦB ∈ {0, 1}M . Both

parties further agree on a random subset Π ∈ Πm,k, and random hash functions Hec ∈
Hec as well as Hpa ∈ Hpa. The corresponding uniformly random seeds are denoted S =

(SΦA , SΦB , SΠ, SHec , SHpa).

State Preparation: Alice chooses a random string r ∈ {0, 1}M and prepares a quantum state ρr,φAA ,

encoding the string r in the measurement basis corresponding to φA.

State Distribution: Alice sends the state ρr,φAA through the quantum channel N and Bob receives the

output state ρr,φAB = N (ρr,φAA ).

Measurement: Bob measures the M quantum systems with the setting ΦB , and stores his ternary

measurement outcomes in a string T ∈ {0, 1, ∅}M , where ∅ denotes an inconclusive measurement

result. Bob publicly announces both the value of ΦB , with transcript CΦB and the set Ω ⊆ 2[M ]

of indices such that TΩ ∈ {0, 1}|Ω| and TΩ̄ = ∅M−|Ω|. The corresponding transcript is denoted CΩ.

Sifting: If it exists, Alice publicly announces a set Σ ⊆ Ω, with transcript CΣ of cardinality m, such

that ΦA and ΦB coincide on Σ, and sets the flag F sift = 6⊥. Otherwise, she sets F sift =⊥ and they

abort. The respective binary substrings of R and T restricted to Σ become the raw keys. As in

the idealized protocol, they are denoted (X,V ) and (Y,W ) for Alice and Bob, respectively. Here

V,W are of length k and correspond to the indices in Π, whereas X,Y of length n correspond to

indices not in Π.

Parameter Estimation: Alice sends V to Bob, the transcript is denoted CV . Bob compares V and

W . If the fraction of errors exceeds δ, Bob sets the flag F pe = ‘⊥’ and they abort. Otherwise he

sets F pe = ‘ 6⊥’ and they proceed.

Error Correction: Alice sends the syndrome Z = synd(X) to Bob, with transcript CZ . Bob computes

X̂ = corr(Y, Z).

Alice computes the hash T = Hec(X) of length t and sends it to Bob, with transcript CT . Bob

computes Hec(X̂). If it differs from T , he sets the flag F ec = ‘⊥’ and they abort the protocol.

Otherwise he sets F ec = ‘ 6⊥’ and they proceed.

Privacy Amplification: They compute keys KA = Hpa(X) and KB = Hpa(X̂) of length `.

Output: The output of the protocol consists of the keys KA and KB , the seeds S =

(SΦB , SΠ, SHec , SHpa), the transcript C = (CΩ, CΣ, CV , CZ , CH) and the flags F =

(F sift, F pe, F ec). In case of abort, we assume that all registers are initialized to a predetermined

value.

Table 4: Realistic Prepare-and-Measure QKD Protocol. The precise mathematical model is described

in Section 5. This protocol differs from the ideal version in several points: in particular, the input now

corresponds to the quantum channel N between Alice and Bob.

5 The Prepare-And-Measure Protocol

We consider the simplest possible implementation of a Prepare and Measure version of BB84. This

section provides the details of the protocol described in Table 4, for the steps where it differs from the

idealized protocol.
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The protocol qkd PMM,k,n,δ,sift,ec,pa is parametrized similarly as the simple protocol of Section 2, with

two extra parameters: an integer M ≥ k+n counting the number of individual states prepared by Alice,

and a sifting procedure described by a classical map sift : {0, 1}M × {0, 1}M × 2[M ] → ΠM,m × {⊥, 6⊥}.

5.1 Preparation and Measurement Devices

Bob’s measurement operators are the same as in the entanglement-based protocol, although they now

need to be specified for indices in [M ] and have an additional outcome, ‘∅’, corresponding to an inconclu-

sive result. An inconclusive result can for instance occur when no detector clicked (photon loss) or when

more than 1 detector clicked (shot noise). Bob’s measurement on subsystem Bi is a binary generalized

measurement {Mφ,t
Bi
}t∈{0,1,∅}.

Alice’s, on the other hand, is able to prepare states ρr,φAi where r, φ ∈ {0, 1} on each subsystem Ai.

5.2 Mathematical Model of the Protocol

He we describe in detail the mathematical model corresponding to the protocol in Table 4.

Input: The realistic protocol qkd PMM,k,n,δ,sift,ec,pa we consider is a ‘prepare and measure’ protocol,

based on BB84, and the role of the input is now played by an (arbitrary) quantum channel NA→B
between Alice and Bob. Here A = A[M ] and B = B[M ].

Randomization: The random seeds are modeled similarly as for the idealized version of the protocol.

Here, the seed SΦ corresponding to identical measurement settings is not provided directly. Instead,

Alice and Bob initially choose independently two strings ΦA,ΦB ∈ {0, 1}M , and it will later be the role

of the sifting procedure to produce a set of identical measurement settings Φ. The random choice of the

strings ΦA,ΦB is modeled by two registers SΦA , SΦB in the state

ρSΦA ⊗ ρSΦB =
1

4M

∑
φA,φB∈{0,1}M

|φA〉〈φA|SΦA ⊗ |φB〉〈φB |SΦB , (111)

where {|φA〉}, {|φB〉} are orthonormal bases of SΦA and SΦB , respectively.

The other random seeds ρSΠ , ρSHec , ρSHpa are identical to the idealized version.

State preparation: Alice randomly chooses an M -bit strings r ∈ {0, 1}M . This is modeled as an

extra register R in the state

ρR =
1

2M

∑
r∈{0,1}M

|r〉〈r|R (112)

where {|r〉} is an orthonormal basis of R.

Alice then prepares a state using the map

P∅→A|RSΦA (·) =
∑

r,φ∈{0,1}M

(
|r〉〈r|R ⊗ |φ〉〈φ|SΦA

)
·
(
|r〉〈r|R ⊗ |φ〉〈φ|SΦA

)
⊗ ρr,φA (113)

where ρr,φA =
⊗M

i=1 ρ
ri,φi
Ai

.2 Applying this map to the seeds in registers R and SΦA gives:

ρRSΦAA =
1

4M

∑
r,φ∈{0,1}M

|r〉〈r|R ⊗ |φ〉〈φ|SΦA ⊗ ρ
r,φ
A . (115)

2In an ideal implementation, the states ρr,φ
A

would be given by

ρ0,0 = |0〉〈0| , ρ1,0 = |1〉〈1| , ρ0,1 = |+〉〈+| , ρ1,1 = |−〉〈−| . (114)
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State distribution: Alice sends her register A to Bob through the quantum channel N : A→ B. The

state shared by Alice and Bob is given by:

ρRSΦAB = NA→B(ρRSΦAA′) (116)

=
1

4M

∑
r,φ∈{0,1}M

|r〉〈r|R ⊗ |φ〉〈φ|SΦA ⊗ ρ
r,φ
B , (117)

where we defined ρr,φB = N
(
ρr,φA

)
.

Measurement: Bob measures each of his M quantum systems in the basis corresponding to ΦB and

stores his measurement outcomes, either 0, 1, or ∅ in the case of inconclusive outcomes, in a string

T ∈ {0, 1, ∅}M . The measurement map MB→TΩ|SΦB : BSΦB → TBΩSΦB is defined as:

MB→TΩ|SΦB (·) =
∑

φ∈{0,1}M

∑
t∈{0,1,∅}M

|t, ω〉TCΩ

(
Mφ,t
B ⊗ |φ〉〈φ|SΦB

)
·
(
Mφ,t
B ⊗ |φ〉〈φ|SΦB

)†
〈t, ω|TCΩ ,

(118)

where ω = ω(t) is the subset of [M ] where t takes values in {0, 1}, namely

ω(t) = {i ∈ [M ] : ti 6= ∅}. (119)

The state of the total system after Bob’s measurement is given by

σRTCΩBSΦASΦB =
1

8M

∑
r,φA,φB∈{0,1}M

|r, t, ω, φA, φB〉〈r, t, ω, φA, φB |RTCΩSΦASΦB ⊗M
φB ,t
B ρr,φAB

(
MφB ,t
B

)†
.

(120)

Sifting: Bob publicly announces the content of the register SΦB together with the description CΩ of

the set Ω of indices corresponding to conclusive measurement results.

Alice then applies the sifting map, a classical map ‘sift‘defined as follows

sift :

{
{0, 1, ∅}M × {0, 1, ∅}M × 2[M ] → ΠM,m × {⊥, 6⊥}

(ΦA,ΦB ,Ω) 7→ (Σ, F sift)
(121)

where Σ is either the first subset of Ω of cardinality m in the lexicographic order where ΦA and ΦB
coincide, if such a set exists, or else σ is set to [m]. In the first case, the flag F sift is set to 6⊥, otherwise

it is set to ⊥ and the protocol aborts.

This classical map is lifted to give a CPTP map Esift = SΦASΦBCΩ → CΣCΩF siftSΦASΦB .

We then define an CPTP map Ero that considers the set Σ and the subset Π and reorders the registers

of A[M ], B[M ], R[M ], T[M ] and puts the k registers corresponding to the subset Π of Σ first, followed by

the n registers of the subset Π̄ of Σ, while tracing out the remaining (M −m) registers, and creates a

new register SΦ containing the restriction of ΦA to Σ:

Ero : CΣSΠA[M ]B[M ]R[M ]T[M ]S
ΦASΦB → AΠ◦ΣV BΠ◦ΣWAΠ̄◦ΣXBΠ̄◦ΣY C

ΣSΦSΠSΦASΦB . (122)

We will sometimes abuse notation and denote A for AΠ◦ΣAΠ̄◦Σ (and instead for B) when it is clear

that we consider a state after the map Ero was applied.

Remaining steps: The remaining steps are as in the entanglement-based QKD protocol.
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Step Input State Output State

Input: N
Randomization: ρSΦB ⊗ ρSΦB ⊗ ρSΠ ⊗ ρSHec ⊗ ρSHpa

State preparation: ρRSΦA ρRSΦAA′

State distribution: ρRSΦAA′ ρRSΦAB

Measurement: ρRSΦAB ⊗ ρSΦB 7→ σRTCΩBSΦASΦB

Sifting: σRTCΩBSΦASΦB ⊗ ρSΠ 7→ σVWXYBSΦSΠCΩCΣF sift

Parameter Estimation: σVW 7→ σCV Fpe

Error Correction: σXY ⊗ ρSHec 7→ σXX̂CZF ec

Privacy Amplification: σXX̂ ⊗ ρSHpa 7→ ωKAKBCH

Output: ωKAKBSCF

Table 5: Evolution of the registers during the execution of the realistic Prepare and Measure QKD

Protocol.

6 Security: Reduction to the Entanglement-Based Protocol

The security proof should establish that for any input channel NA→B given to qkd PMM,k,n,δ,ec,pa, either

the protocol outputs secret identical keys, or else it aborts. In the same spirit as the entanglement-based

version, we define the security parameter

∆M,k,n,δ,ec,pa := sup
NA→BE

1

2

∥∥∥qkd PMM,k,n,δ,ec,pa(NA→BE)− qkd idealM,k,n,δ,ec,pa(NA→BE)
∥∥∥

1
, (123)

where again qkd idealM,k,n,δ,ec,pa is defined analogously to the entanglement-based case and simply

replaces the output of qkd PMM,k,n,δ,ec,pa(NA→BE) with a perfect key in case the protocol does not

abort. Here, the channels NA→BE have an additional output that goes to an eavesdropper, and it again

suffices to consider maps where E is finite-dimensional.

Establishing security proof thus boils down to showing that this trace distance is small for all such

channels. The following Lemma, along the same lines as the discussion for the entanglement-based case,

gives a sufficient condition for this.

Lemma 12. If, for every NA→BE as in (123), the state ωKAKBSCFE = qkd PMM,k,n,δ,ec,pa(NA→BE)

satisfies 1
2

∥∥ωKAKBSCFE|F sift= 6⊥ − χKAKB ⊗ ωSCFE|F sift= 6⊥
∥∥

1
≤ ε, then we have ∆M,k,n,δ,ec,pa ≤ ε.

Our strategy is to show that the realistic protocol is equivalent to applying the idealized QKD protocol

on a virtual quantum state ρAB and that the random seed SΦ is uniformly distributed. For this, we

need to make explicit assumptions about (i) the state preparation on Alice’s side to make sure that no

basis information is leaked and (ii) the measurement device on Bob’s side to ensure that the invalid

measurement results do not depend on the measurement basis.

6.1 Assumptions on the Devices

We need to impose strict conditions on Bob’s measurement devices and Alice’s states in case we want to

reduce the security of the protocol to the entanglement-based protocol, and these will be discussed next.

6.1.1 Assumption 1: Alice’s state:

The state ρRΦAA prepared by Alice should not leak any information about the basis choice ΦA, i.e., we

need that

trR(ρRΦAA) = ρΦA ⊗ ρA. (124)
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In other words, the marginal state ρA′ does not leak any information about the basis choice made by

Alice. Note that Assumption 1 is equivalent to∑
r∈{0,1}M

ρr,φA =
∑

r∈{0,1}M
ρr,φ

′

A , (125)

for any pair φ, φ′ ∈ {0, 1}M .

This assumption allows us to replace the state preparation by a virtual measurement.

Lemma 13 (Virtual entanglement). If Assumption 1 in (124) holds, then there exists a state ρAA′ and

a measurement map MA′→R|SΦA such that

ρRΦAA =MA′→R|SΦA (ρAA′ ⊗ ρΦA) . (126)

Proof. The assumption implies that the sum

ρA =
1

2M

∑
r∈{0,1}M

ρr,φA (127)

is independent of the parameter φ. This in turn ensures the existence of an extension ρAA′ of ρA and of

measurement operators Mr,φ
A′ such that

∑
r∈{0,1}M

(
Mr,φ
A′

)†
Mr,φ
A′ = idA and ρr,φA = trA′

(
Mr,φ
A′ ρAA′

(
Mr,φ
A′

)†)
. (128)

Let us therefore define the measurement map MA′→R|SΦA : A′ΦA → RAΦA:

MA′→R|SΦA (·) =
∑

r∈{0,1}M

∑
φ∈{0,1}M

|r〉R
(
Mr,φ
A′ ⊗ |φ〉〈φ|ΦA

)
·
(
Mr,φ
A′ ⊗ |φ〉〈φ|ΦA

)†
〈r|R. (129)

One can easily check that ρRΦAA =MA′→R|SΦA (ρAA′ ⊗ ρΦA).

6.1.2 Assumption 2: Bob’s measurement:

Bob’s measurement map can be decomposed as follows:

MB→TΩ|SΦB =MB→T |SΦB ◦MB→Ω, (130)

where MB→Ω : B → BΩ is given by

MB→Ω(·) =
∑

s∈{∅,∅̄}M
|ω〉Ω

(
Ms
B

)
·
(
Ms
B

)† 〈ω|Ω . (131)

where ω(s) = {i ∈ [M ] : si 6= ∅}.
This decomposition allows us to perform the sifting operation prior to the actual measurement, i.e.

the sifting step and the measurement commute in the sense of the next lemma.

Lemma 14. Assume Assumption 2 holds. For any state ρA′BE, define

ρA′BCΣCΩSΦEF sift = Ero ◦ Esift ◦MB→Ω(ρA′BE ⊗ ρSΦA ⊗ ρSΦB ). (132)

Then, the state conditioned on the sifting procedure passing satisfies:

ρA′BSΦCΣCΩE|F sift=6⊥ = ρA′BCΣCΩE|F sift=6⊥ ⊗ ρSΦ , (133)

where ρSΦ = 1
2m

∑
φ∈{0,1}m |φ〉〈φ|Φ.
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Proof. Since the map MB→Ω only acts on register B, independently on the value of ΦB ,

MB→Ω(ρA′BE ⊗ ρSΦA ⊗ ρSΦB ) = ρA′BCΩE ⊗ ρSΦA ⊗ ρSΦB , (134)

where the state ρA′BCΩE =MB→Ω(ρA′BE) can be expanded as:

ρA′BCΩE =
∑

s∈{∅,∅̄}M
|ω〉CΩ

(
Ms
B

)
ρA′BE

(
Ms
B

)† 〈ω|CΩ . (135)

The classical map ’sift’ has the following property: for any string θ ∈ {0, 1}M and any subset Ω ⊆ [M ],

if the sifting succeeds, then

sift(φA + θ, φB + θ,Ω) = sift(φA, φB ,Ω). (136)

The map Ero examines the register SΦA and puts its content (restricted to the set Σ determined by

the sifting map) into register SΦ. The above property of the sifting map ensures that the value of Φ does

not depend on Ω. Moreover, it ΦA and ΦB are initially independent and uniformly distributed, then so

is Φ.

This proves that whenever the sifting test passes, the output state takes a tensor product form:

ρA′BSΦCΣCΩE|F sift=6⊥ = ρA′BCΣCΩE|F sift=6⊥ ⊗ ρSΦ .

6.2 Security Statement and Proof

Under these assumptions, we show that the realistic QKD protocol is secure.

Theorem 15. Under Assumptions 1 and 2, if the protocol qkd simplek,n,δ,ec,pa is ε-secure with c̄ eval-

uated for the measurements specified in Lemma 13, then qkd PMM,k,n,δ,sift,ec,pa is also ε-secure.

Proof. Let us consider the input state ρRΦAB ⊗ ρSΦB The assumption on Alice’s state preparation

together with Lemma 13 proves the existence of a state ρA′BE ⊗ ρSΦB = NA→BE(ρAA′) ⊗ ρSΦB such

that ρRΦAB =MA′→R|SΦA (ρA′B ⊗ ρSΦA ).

Define the QKD protocol qkd modifiedk,n,δ,ec,pa similarly as the idealized version of the protocol,

qkd simplek,n,δ,ec,pa, with the exception that the randomness for the measurement basis choice is ex-

plicitly given as an input. In particular, one has:

qkd modifiedk,n,δ,ec,pa(ρA′BE ⊗ ρSΦ) = qkd simplek,n,δ,ec,pa(ρA′B) . (137)

The sifting map Esift ⊗MB→Ω commutes with MA′→R|SΦA , which implies that

Esift ⊗MB→Ω (ρRΦAB) =MA′→R|SΦA ◦ Esift ⊗MB→Ω

(
ρA′B ⊗ ρSΦA

)
(138)

=MA′→R|SΦA (ρA′BSΦCΣF sift). (139)

Moreover, using Lemma 14, conditioning on the sifting test passing, one obtains ρA′BSΦCΣCΩE|F sift=6⊥ =

ρA′BCΣCΩE ⊗ ρSΦ , which means that

qkd modifiedk,n,δ,ec,pa

(
ρA′BSΦCΣCΩE|F sift=6⊥

)
= qkd simplek,n,δ,ec,pa (ρA′BCΣCΩE) . (140)

Let us now collect E′ = CΣCΩE. Finally, if the sifting test passes, one has the following equalities:

qkd PMM,k,n,δ,sift,ec,pa(NA→BE) = qkd modifiedk,n,δ,ec,pa

(
ρABSΦE′|F sift=6⊥

)
(141)

= qkd simplek,n,δ,ec,pa (ρA′BE′) , (142)

which, together with Lemma 12, concludes the proof.
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A Proof of Entropic Uncertainty Relation in Theorem 4

We will show that Hε
min(X|BP )σ+Hε

max(X|CP )σ ≥ log 1
cq

for the definitions given in Theorem 4. (Note

that we have changed notation here by interchanging B and C.) For this purpose, we first introduce the

Stinespring dilation isometry of the measurement map MX . This is the isometry VX : PA → PAXX ′

given by

VX :=
∑
p∈P

∑
x∈X
|x〉X ⊗ |x〉X′ ⊗ |p〉〈p|P ⊗ F

p,x
A (143)

Now note that σXBP has a natural purification in

σXX′ABCDPP ′ = VX
(
τABCD ⊗ ψPP ′

)
V †X , (144)

where ψPP ′ is a maximally entangled state and τABCD is any purification of τABC .

The proof is now split into two parts.

• The main technical difficulty lies in Lemma 16 below, which asserts that

Hε
min(X|BP )σ ≥ Hε

min(X|X ′ABP )σ + log
1

cq
. (145)

• Then, applying the duality relation in (50) to (145) yields

Hε
min(X|BP )σ +Hε

max(X|CDP ′)σ ≥ log
1

cq
. (146)

The desired result then follows from the DPI in (51) applied for the CPTP map trD, and the fact

that σXCP ′ is isomorphic to σXCP .

Lemma 16. Equation (145) holds for σXX′ABCDPP ′ defined as in (143)–(144).

Proof. Let us consider the following unitary rotations (permutation):

QP =
∑
p∈P

∣∣q(p)〉〈p∣∣
P
. (147)

that exchange p with its conjugate, q(p). Clearly we have QP (ρABCP )Q†P = ρABCP due to the symmetry

condition on q. Based on this we define the isometry

V̄X := QPVXQ
†
P =

∑
p∈P

∑
x∈X
|x〉X ⊗ |x〉X′ ⊗ |p〉〈p|P ⊗ F

q(p),x
A , (148)

and note that

V̄XV
†
XσXX′ABCPVX V̄

†
X = QPVXQ

†
P (ρABCP )QPV

†
XQ
†
P (149)

= QPσXX′ABCPW
†
P . (150)

The CP trace non-increasing map V̄XV
†
X(·)VX V̄ †X coherently undoes the measurement in the basis de-

termined by q and then instead measures in the basis determined by q(p).

By the definition of the smooth min-entropy, Hε
min(X|X ′ABP )σ = λ, there exists a state σ̃XX′ABP

with P (σXX′ABP , σ̃XX′ABP ) ≤ ε and a state ωX′ABP ∈ S(X ′ABP ) such that

σ̃XX′ABP ≤ 2−λ idX ⊗ ωX′ABP . (151)

Next we consider the CP trace non-increasing map

FXX′A→X|P [ · ] =
∑
p∈P

trX′A

(
W †P V̄XV

†
X |p〉〈p|P · |p〉〈p|P VX V̄

†
XWP

)
. (152)
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From (150) we learn that F
[
σXX′ABP

]
= σXBP . Thus, using the fact that the purified distance con-

tracts (47) when we apply F , we find that the state σ̂XBP = F
[
σ̃XX′ABP

]
satisfies

P (σ̂XBP , σXBP ) ≤ P (σ̃XX′ABP , σXX′ABP ) ≤ ε. (153)

Furthermore, Applying F on both sides of (151) yields

σ̂XBP ≤ 2−λF
[
idX ⊗ ωX′ABP

]
= 2−λ trX′A

(
W †P V̄XV

†
X

(
idX ⊗ ω̂X′ABP

)
VX V̄

†
XWP

)
, (154)

where ω̂X′ABP =
∑
p∈P |p〉〈p|P ⊗ ω̂

p
X′AB with ω̂pX′AB = 〈p|ωX′ABP |p〉P . Let us now simplify the right-

hand side of this inequality using Claim 17 below, which asserts that

F
[
idX ⊗ ωX′ABP

]
≤ cq ·

∑
p∈P

idX ⊗ |p〉〈p|P ⊗ ω̂
p
B . (155)

Combining this bound with (154) yields

σ̂XBP ≤ 2−λcq · idX ⊗
∑
p∈P
|p〉〈p|P ⊗ ω̂

p
B . (156)

Since
∑
p∈P tr(ω̂pB) = 1 by construction and P (σ̂XBP , σXBP ) ≤ ε due to (153), the definition of the

smooth entropy implies that

Hε
min(X|BP )σ ≥ λ− log cq = Hε

min(X|X ′ABP )σ − log cq , (157)

concluding the proof.

Claim 17. Equation (155) holds.

Proof. First, we note that

W †P V̄XV
†
X =

∑
p∈P

∑
x,z∈X

|z〉〈x|X ⊗ |z〉〈x|X′ ⊗
∣∣q(p)〉〈p∣∣

P
⊗ F q(p),zA

(
F p,xA

)†
. (158)

and, hence, we can simplify

F
[
idX ⊗ ωX′ABP

]
=
∑
p∈P

∑
x,z∈X

|x〉〈x|X ⊗ |q(p)〉〈q(p)|P ⊗ 〈z| trA
(
F
q(p),z
A

(
F p,xA

)†
ω̂pX′ABF

p,x
A

(
F
q(p),z
A

)†) |z〉X′ (159)

≤
∑
p∈P

∑
x,z∈X

|x〉〈x|X ⊗ |q(p)〉〈q(p)|P ⊗
∥∥∥F p,xA (

F
q(p),z
A

)†
F
q(p),z
A

(
F p,xA

)†∥∥∥
∞
〈z| trA

(
ω̂pX′AB

)
|z〉X′ (160)

=
∑
p∈P

∑
x,z∈X

|x〉〈x|X ⊗ |q(p)〉〈q(p)|P ⊗
∥∥∥F q(p),xA

(
F p,zA

)†∥∥∥2

∞
〈z| ω̂pX′B |z〉X′ (161)

≤ max
p∈P

max
x,z∈X

∥∥∥F q(p),xA

(
F p,zA

)†∥∥∥2

∞
·
∑
p∈P

∑
x,z∈X

|x〉〈x|X ⊗ |p〉〈p|P ⊗ 〈z| ω̂
p
X′B |z〉X′ (162)

= cq ·
∑
p∈P

idX ⊗ |p〉〈p|P ⊗ ω̂
p
B . (163)

To establish (160) and (161) we used the fact that L†L ≤ ‖L†L‖∞ id = ‖L‖2∞ id for every linear operator

L by definition of the operator norm. The final equality (163) follows from the definition of cq.

25



B Proof of Leftover Hashing Lemma in Theorem 5

We will use the following Proposition due to Renner [4, Cor. 5.5.2].

Lemma 18. Using the notation of Theorem 5, we have

‖ωKSHE′ − χK ⊗ ωSHE′‖1 ≤
√

tr(σXE′) · 2−
1
2 (Hmin(X|E′)σ−`) . (164)

Note that the trace term can be ignored since it is always upper-bounded by 1.

Proof of Theorem 5. We apply Lemma 18 to the state σ̃XE′ , which yields

‖ω̃KSHE′ − χK ⊗ ω̃SHE′‖1 ≤ 2−
1
2 (Hmin(X|E′)σ̃−`) . (165)

Here, ω̃KSHE′ = trX
(
Ef (σ̃XE′ ⊗ ρSH )

)
. Then, exploiting the triangle inequality, we find

‖ωKSHE′ − χK ⊗ ωSHE′‖1
≤ ‖ω̃KSHE′ − χK ⊗ ω̃SHE′‖1 + ‖ω̃KSHE′ − ωKSHE′‖1 + ‖ω̃SHE′ − ωSHE′‖1 (166)

≤ 2−
1
2 (Hmin(X|E′)σ̃−`) + 2‖σ̃XE′ − σXE′‖1 , (167)

as desired. Here we used the data-processing inequality for the trace norm, which implies that

‖ω̃HE′ − ωSHE′‖1 ≤ ‖ω̃KSHE′ − ωKHE′‖1 ≤ ‖σ̃XE′ ⊗ ρSH − σKE′ ⊗ ρSH‖1 = ‖σ̃XE′ − σKE′‖1 . (168)
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