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Blind quantum computation protocols allow a user only having so limited quantum devices to
delegate an intractable computation to a quantum server, keeping the computation perfectly secret.
While some of them are verifiable, where the user can verify that given outcomes are correct, a third
party cannot do and hence a cheating party will be able to get benefits illegally. We propose a new
blind quantum computation protocol with a new property called public verifiability, which enables
any third party to assure that a party does not benefit from its cheating.

a. Introduction If only she has a classical computer
and so limited quantum devices such as a single qubit
generator [3] or a measurement device [15], blind quan-
tum computation (BQC) protocols [1–4, 6, 7, 11–16] en-
able Alice to delegate her computation to Bob’s quantum
computer with wonderful properties: correctness (she can
receive the correct outcomes from honest Bob), univer-
sality (she can delegate any quantum computation), and
blindness (even if Bob is evil, he learns nothing about
her computation other than an upper-bound of its size).
Some proposed BQC protocols have an additional prop-
erty called unconditional verifiability [1, 3, 6, 7, 12, 13].
Even though she does not know whether Bob is honest
or not and she cannot check directly the received out-
comes, the property allows Alice to verify uncondition-
ally that the outcomes are correct. The main idea for
giving unconditional verifiability to a BQC protocol is as
follows [6]. Alice secretly inserts independent and trivial
parts, which are called traps, into her desired compu-
tation. Since the traps are trivial and independent, she
knows their expected outcomes and she can detect cheat-
ing by checking whether the outcomes of traps match the
expected ones. As the insertion was done secretly, Bob
cannot know where the traps are, and therefore he cannot
tamper with her computation avoiding being detected ex-
cept for a small probability.

Unconditional verifiability gives Alice an ability to de-
tect cheating. However, since the verification method es-
sentially uses her private information, the property does
not allow a third party to see through Bob’s lie. Hence,
when Alice claims to find cheating, a third party cannot
verify her claim. The fact not only means theoretical in-
completeness but also causes a practical problem. In a
realistic setting, Alice has to pay a fee to delegate her
computation to Bob. It is reasonable that Alice pays if
and only if Bob returns the correct outcomes. Other-
wise, evil Alice can obtain the correct outcomes without
the payment or evil Bob can earn just by returning ran-
dom values, in order words, without running his quan-
tum computer. However, since any third party has no
way to judge whether Alice receives the correct outcomes,
the reasonable scheme cannot be realised. Of course, if
there exists a trustworthy party, an unconditionally veri-
fiable BQC protocol can be improved so that the dispute
between Alice and Bob can be resolved: the trustwor-
thy party chooses traps instead of Alice; the party se-

cretly tells them to Alice before starting the protocol,
and checks the outcomes of the traps after finishing the
protocol. However, it is too difficult to find such a party
and moreover there is no way to check whether a party is
really reliable. Therefore, a challenge is to resolve the dis-
pute without relying on the existence of a special party.

In this talk, we introduce a new property into a BQC
protocol, which we call public verifiability. Public verifia-
bility guarantees that a third party (say Justin) who has
a classical computer can verify that a party does not ben-
efit from cheating. We allow Justin to communicate with
neither Alice nor Bob. He just observes classical commu-
nication between Alice and Bob, and finally judges which
party cheats. Therefore, another party can recheck his
judgement as long as the party has a classical computer
and the communication log is kept.

Based on an existing unconditionally verifiable BQC
protocol, we propose a new unconditionally verifiable
BQC protocol. Our protocol still has correctness, univer-
sality, blindness, and unconditional verifiability, without
any additional assumption. In this sense, our protocol
can be said to be at least as good as the original pro-
tocol. Moreover, with the help of classical public-key
cryptography, our protocol achieves computational pub-
lic verifiability, provided that Alice has only the mini-
mum quantum device, where computational public ver-
ifiability means that Justin can detect Bob’s lie uncon-
ditionally and Alice’s lie computationally. Our protocol
is a more practical BQC protocol than others, and also
shows how classical public-key cryptography enhances a
quantum secure protocol.

b. Main idea Our idea for adding public verifiabil-
ity to an unconditionally verifiable BQC protocol can be
understood as a use of a computationally hiding and per-
fectly binding bit commitment scheme, which can be im-
plemented using classical public-key cryptography. Bob
commits to computation results by generating a public-
key and a secret-key, encrypting the computation results,
and announcing them and the public-key. Alice and Bob
follow the original protocol, and then Alice announces
the locations of traps and their expected outcomes. Bob
checks whether his results of the traps are equal to the
expected outcomes, and if so, he reveals the computa-
tion results by announcing the secret-key. Because of
perfect binding, evil Bob cannot change the committed
results after getting information about the traps. More-
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over, since the commitment scheme is computationally
hiding, it is computationally guaranteed that when evil
Alice forges the expected outcomes of traps, she cannot
learn the computation results. The method requires no
extra party and, since the computational ability of Alice
is so limited, classical public-key cryptography needs not
to be very strong.
However, the idea faces a problem. On one hand, as

any one-round BQC protocol needs exponentially grow-
ing numbers of qubits [18], Alice and Bob exchange mes-
sages multiple times during execution of a BQC proto-
col. It means that Alice has to send a message that de-
pends on the previous messages from Bob. On the other
hand, the messages from Bob contain partial informa-
tion about computation results, and hence they should
be hidden from Alice. We solve this dilemma by making
Alice also encrypt her messages and assuming that clas-
sical public-key cryptography to be homomorphic. This
solution allows malicious Bob to attack against Alice’s
secret: he may send an ill-formed public-key or message
so that he can extract more information than Alice’s de-
sired message from an ill-formed message that Alice un-
awares sends. We also require cryptography to be secure
against this kind of attacks. In summary, we require the
following.

1. It is homomorphic sufficient to run our protocol.

2. Even if Bob sends ill-formed public-key and/or
messages and Alice is unaware of the illegality, her
messages encrypted by the public-key do not reveal
any information other than the desired messages.

3. Given a pair of candidates of a public-key and a
secret-key, Justin can confirm that the pair is the
genuine one.

4. Whatever Alice knows about its plaintext in prior,
a ciphertext gives her only negligible additional
information about the plaintext under acceptable
computational assumptions.

The requirement 3 is necessary for perfect binding. Note
that although Alice has no quantum computer, the re-
quirement 4 is stronger than usual semantic security
claims because a plaintext is possibly related to the
secret-key, which she compute using the power of Bob’s
quantum computer.

c. Results We apply the above idea to an un-
conditionally verifiable BQC protocol, Fitzsimons-
Kashefi (FK) protocol [6]. Using the requirements 1–
3, we prove that our protocol preserves the properties of
original FK protocol: correctness, universality, blindness,
and unconditionally verifiability. Especially, the proba-
bility of Alice detecting Bob’s cheating is preserved. The
requirements 1–3 need no assumption and so the preser-
vation holds with no extra assumption.

As shown in the requirement 4, public verifiability
needs some additional assumptions. In order to show
the property, we put three assumptions: (i) Alice does
not have any quantum device other than a single qubit
generator, (ii) the number of qubits is polynomial in the
security parameter, and (iii) the computational assump-
tions in the requirement 4. The second and the third
assumptions are standard. The first one is used to derive
the fact that Alice cannot set secretly a quantum channel
between her and Bob, and cannot obtain the computation
results directly. Using the requirements and the assump-
tions, we prove that our protocol achieves computational
public verifiability.

Finally, we show the existence of classical public-key
cryptography that can be used to give public verifiability
to FK protocol. Specifically, we choose ElGamal cryptog-
raphy [5], and use inattentive evaluations [17] to make it
homomorphic. We prove this construction satisfies all of
the above requirements.

d. Discussion In order to add public verifiability,
we required Bob to commit to his computation results.
Another choice is a commitment by Alice: before start-
ing an original protocol, she commits to traps that she
chooses, and she reveals them after the protocol. How-
ever, since she receives computation results before re-
vealing the committed value, this method allows Alice
to borrow the power of Bob’s quantum computer with-
out any restriction and she can use it to break binding.
Hence, the method requires binding to be secure against
such attacks. An unconditionally secure bit commitment
scheme [8–10] is a possible solution and it seems that
it achieves unconditional public verifiability. However,
it requires that Alice and Bob each prepare agents in a
distant place. The agents should be trusted, and if the
agent of Alice betrays her, verifiability no longer holds.
It should be emphasised that our protocol needs no such
assumption for verifiability.
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[11] Mantri, A., Pérez-Delgado, C. A., and Fitzsimons, J. F.,
Phys. Rev. Lett. 111, 230502 (2013).

[12] Morimae, T., Nat. Phys. 9, 693 (2013).
[13] Morimae, T., Phys. Rev. A 89, 060302 (2014).
[14] Morimae, T. and Fujii, K., Nat. Commun. 3, 1036 (2012).
[15] Morimae, T. and Fujii, K., Phys. Rev. A 87, 050301

(2013).
[16] Morimae, T. and Fujii, K., Phys. Rev. Lett. 111, 020502

(2013).
[17] Sander, T., Young, A., and Yung, M., in Foundations

of Computer Science, 1999. 40th Annual Symposium on
(1999) pp. 554–566.
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Blind quantum computation protocols allow a user only having so limited quantum devices to
delegate an intractable computation to a quantum server, keeping the computation perfectly secret.
While some of them are verifiable, where the user can verify that given outcomes are correct, a third
party cannot do and hence a cheating party will be able to get benefits unreasonably. We propose
a new blind quantum computation protocol with a new property called public verifiability, which
enables any third party to assure that a party does not benefit from its cheating.

I. INTRODUCTION

If only she has a classical computer and so limited quantum devices such as a single qubit generator [4] or a
measurement device [19], blind quantum computation (BQC) protocols [1, 2, 4, 5, 7, 9, 15–20] enable Alice to delegate
her computation to Bob’s quantum computer with wonderful properties: correctness (she can receive the correct
outcomes from honest Bob), universality (she can delegate any quantum computation), and blindness (even if Bob is
evil, he learns nothing about her computation other than an upper-bound of its size). Some proposed BQC protocols
have an additional property called unconditional verifiability [1, 4, 7, 9, 16, 17]. Even though she does not know
whether Bob is honest or not and she cannot check directly the received outcomes, the property allows Alice to
verify unconditionally that the outcomes are correct. The main idea for giving unconditional verifiability to a BQC
protocol is as follows [7]. Alice secretly inserts independent and trivial parts, which are called traps, into her desired
computation. Since the traps are trivial and independent, she knows their expected outcomes and she can detect
cheating by checking whether the outcomes of traps match the expected ones. As the insertion was done secretly,
Bob cannot know where the traps are, and therefore he cannot tamper with her computation avoiding being detected
except for a small probability.
Unconditional verifiability gives Alice an ability to detect cheating. However, since the verification method essen-

tially uses her private information, the property does not allow a third party to see through Bob’s lie. Hence, when
Alice claims to find cheating, a third party cannot verify her claim. The fact not only means theoretical incompleteness
but also causes a practical problem. In a realistic setting, Alice has to pay a fee to delegate her computation to Bob.
It is reasonable that Alice pays if and only if Bob returns the correct outcomes. Otherwise, evil Alice can obtain the
correct outcomes without the payment or evil Bob can earn just by returning random values, in order words, without
running his quantum computer. However, since any third party has no way to judge whether Alice receives the correct
outcomes, the reasonable scheme cannot be realised. Of course, if there exists a trustworthy party, an unconditionally
verifiable BQC protocol can be improved so that the dispute between Alice and Bob can be resolved: the trustworthy
party chooses traps instead of Alice; the party secretly tells them to Alice before starting the protocol, and checks
the outcomes of the traps after finishing the protocol. However, it is too difficult to find such a party and moreover
there is no way to check whether a party is really reliable. Therefore, a challenge is to resolve the dispute without
relying on the existence of a special party.
In this talk, we introduce a new property into a BQC protocol, which we call public verifiability. Public verifiability

guarantees that a third party (say Justin) who has a classical computer can verify that a party does not benefit from
cheating. We allow Justin to communicate with neither Alice nor Bob. He just observes classical communication
between Alice and Bob, and finally judges which party cheats. Therefore, another party can recheck his judgement
as long as the party has a classical computer and the communication log is kept.
Based on an existing unconditionally verifiable BQC protocol, we propose a new unconditionally verifiable BQC

protocol. Our protocol still has correctness, universality, blindness, and unconditional verifiability, without any
additional assumption. In this sense, our protocol can be said to be at least as good as the original protocol.
Moreover, with the help of classical public-key cryptography, our protocol achieves computational public verifiability,
provided that Alice has only the minimum quantum device, where computational public verifiability means that Justin
can detect Bob’s lie unconditionally and Alice’s lie computationally. Our protocol is a more practical BQC protocol
than others, and also shows how classical public-key cryptography enhances a quantum secure protocol.

II. FK PROTOCOL

Let us briefly review a verifiable BQC protocol Fitzsimons-Kashefi (FK) protocol [7], since our protocol is based
on it. The protocol uses measurement-based quantum computation (MBQC) [22] and proceeds as follows.
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(I) Alice selects a graph G and randomly the locations T of traps from the vertexes V . She also chooses uniformly
randomly {di}i∈NG(T ) and {θi}i∈V from {0, 1} and {kπ

4 | k = 0, . . . , 7} respectively, where NG(T ) is the
neighbourhoods of T . Let {φi}i∈V be her computational angle on G where φi = 0 for all i ∈ T ∪NG(T ). She

announces the graph G and sends Bob single qubit states {|qi⟩}|V |
i=1 where

|qi⟩ =
{

|di⟩ (i ∈ NG(T ))∏
j∈NG(i)∩NG(T ) Z

dj |+θi⟩ (i /∈ NG(T ))
(1)

and |+θi⟩ = 1√
2
(|0⟩ + eiθi |1⟩). Bob receives the qubits and applies controlled-Z gates to the pairs of qubits

adjoining in the graph G.

(II) They repeat the following for all qubits.

(a) Alice chooses a random bit ri and computes a measurement angle δi by

δi = (−1)
∑

j∈Xi
(bj+rj)φi + θi + πri + π

∑

j∈Zi

(bj + rj) (mod 2π) (2)

where subscripts Xi, Zi are sets determined by the graph.

(b) Alice sends δi to Bob.

(c) Bob measures the ith qubit with the angle δi and obtains the measurement result bi.

(d) Bob sends bi to Alice.

(III) Alice accepts if bt = rt for all t ∈ T .

Note that the measurement angle δi depends on the previous measurement results {bj}j<i. In FK protocol, the
random angles {θi} and the random bits {ri} make the measurement angles and the measurement results completely
random respectively, but the angle adjustment (2) does FK protocol work correctly. Moreover, since a state of any
neighbourhood of a trap qubit is |0⟩ or |1⟩, any trap qubit is separated from the other qubits. Hence, Alice knows
that the measurement result bt should be rt. With a carefully chosen graph state and computation encoded in a
fault-tolerant manner, FK protocol achieves universality and verifiability with an exponentially high probability.

III. RESULTS

a. Publicly verifiable BQC protocol Now, we show our protocol. Our protocol uses classical public-key cryptog-
raphy. We do not specify cryptography here, but assume that before starting the protocol, Alice and Bob agree on
which cryptography they use. Moreover, whenever receiving messages, Alice or Bob checks validity of the messages
and aborts if they are found to be invalid. The protocol runs as follows.

(I) Alice selects a graph G and randomly the locations T of traps from the vertexes V . She also chooses uniformly
randomly {di}i∈NG(T ) and {θi}i∈V from {0, 1} and {kπ

4 | k = 0, . . . , 7} respectively, where NG(T ) is the
neighbourhoods of T . Let {φi}i∈V be her computational angle on G where φi = 0 for all i ∈ T ∪NG(T ). She

announces the graph G and sends Bob single qubit states {|qi⟩}|V |
i=1 where

|qi⟩ =
{

|di⟩ (i ∈ NG(T ))∏
j∈NG(i)∩NG(T ) Z

dj |+θi⟩ (i /∈ NG(T ))
(3)

and |+θi⟩ = 1√
2
(|0⟩ + eiθi |1⟩). Bob receives the qubits and applies controlled-Z gates to the pairs of qubits

adjoining in the graph G. He generates a pair of a public-key pk and a secret-key sk, and sends pk.

(II) They repeat the following for all qubits.

(a) Alice chooses a random bit ri and computes a measurement angle δi and its ciphertext δ∗i .

(b) Alice sends the ciphertext δ∗i to Bob.

(c) Bob decrypts it, measures the ith qubit with the angle δi, and obtains the measurement result bi.

(d) Bob computes the ciphertext b∗i of bi and sends b∗i to Alice.
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(III) Alice announces T and the expected results {rt}t∈T . Then, Bob checks the associated results {bt}t∈T and
announces the secret-key sk if bt = rt for all t ∈ T . She decrypts all received messages using the secret-key, and
accepts if the secret-key is valid and bt = rt for all t ∈ T .

(IV) As a public verification procedure, Justin accepts if the secret-key is valid and bt = rt for all t ∈ T .

The big difference between our protocol and FK protocol is that Alice and Bob encrypt their messages and Alice
reveals the traps. Intuitively, the changes give public verifiability to FK protocol for the following reasons. As she has a
limited computational ability, the encryption of Bob’s messages makes Alice unable to obtain the measurement results
until Bob verifies that the traps are untouched and then she receives the secret-key. In order to obtain the secret-key,
evil Alice has to announce the true traps and hence she cannot cheat, otherwise Bob aborts the protocol. Moreover,
even if evil Bob accepts the measurement results dishonestly and reveals the secret-key, since he cannot change
already public information, Alice and Justin recheck them with the revealed secret-key and can find the lie. Another
explanation for the reasons is that we implement a computationally hiding and perfectly binding bit commitment
scheme using classical public-key cryptography. Bob commits to the measurement results by sending ciphertexts of
them, and reveals the committed results by announcing the secret-key. Perfect binding makes impossible for Bob to
change the committed measurement results and computational hiding disables Alice to read out the measurement
results until the reveal phase.
The encryption of messages raises questions about our protocol. How does Alice compute the ciphertext of the

measurement angle (2) without the previous measurement results? Does not the encryption damage the security?
We solve the questions by choosing cryptography carefully. We require cryptography to be homomorphic sufficient to
compute (2) so that Alice can compute the ciphertext of the measurement angle, although she cannot compute the
angle itself. Moreover, we have to protect blindness and verifiability from an attack of malicious Bob using ill-formed
messages: malicious Bob sends ill-formed ciphertexts of measurement results to receive an ill-formed ciphertext
that may contain more information than the measurement angle; he sends a false secret-key in order that Alice
accepts incorrect outcomes wrongly. In summary, we require that classical public-key cryptography should satisfy the
following.

1. Given the encrypted measurement results {bj}j<i, Alice can compute a ciphertext of the measurement angle δi,
which is defined by the equation (2).

2. Even if Bob sends ill-formed public-key and/or messages and Alice is unaware of the illegality, her messages
encrypted by the public-key do not reveal any information other than the desired angles.

3. Given a pair of candidates of a public-key and a secret-key, Justin can confirm that the pair is the genuine one.

4. Whatever Alice knows about its plaintext in prior, a ciphertext gives her only negligible additional information
about the plaintext under acceptable computational assumptions.

We will see there exists suitable cryptography later.
b. Properties Thanks to the properties of FK protocol, our protocol has correctness, universality, blindness, and

verifiability.

Theorem 1. If classical public-key cryptography satisfies the requirements 1–3, then our protocol is correct, universal,
blind, and verifiable.

Proof. The requirement 1 enables Alice to compute the correct measurement angle δi, and preserves correctness. Since
we do not restrict possible graphs or measurement angles, Alice can compute what she can in FK protocol. Next,
we show blindness. In our protocol, the classical information that Bob obtains is G, {δ∗i }, {bi}, T, and {rt}. The
requirement 2 ensures that δ∗i contains no information than δi. In addition, since T and {rt} are chosen uniformly
randomly, they are independent from Alice’s computation. Therefore, Bob obtains no extra classical information, and
blindness is preserved. Finally, we prove verifiability by showing the probability that honest Alice wrongly accepts in
our protocol is equal to one in FK protocol. Fix the parameters of Alice P ≡ (G,T, {di}, {θi}, {φi}, {ri}). We ignore
parameters used in encryption for a moment. Assume that evil Bob succeeds in making Alice accept by sending {mi}
where mi is expected to be b∗i . Then, he has to announce pk and sk, and the requirement 3 guarantees that they
are a genuine key pair. Using the secret-key, Alice can decrypt all received messages and can verify the messages are
valid. In short, Bob cannot send any ill-formed message to deceive Alice. Hence, mi is a valid ciphertext b∗i for any
i and bt is equal to rt for any t ∈ T . Now, suppose that Alice starts FK protocol with parameters P . Then, if Bob
sends {bi} to Alice during the protocol, he succeeds in cheating her. Conversely, if messages {bi} can be used in FK
protocol to deceive Alice who chose parameters P , then {b∗i } also can be used in our protocol. The arguments does
not depend on the choice of parameters in encryption and so they holds in any case. In summary, Bob’s strategy to
cheat Alice in our protocol can be used also in FK protocol just by making messages plaintexts, and vice versa. It
leads that the probabilities of Bob successfully deceiving Alice in our protocol and FK protocol are the same.
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Now, we show that our protocol has public verifiability. Before that, we define public verifiability. Let Justin be a
third party who has a classical computer and records all public classical information, but cannot send any message
to another party. Intuitively, public verifiability claims evil party cannot influence his judgement in her/his flavour
beyond a bound. Formally, a BQC protocol is (ϵ, δ)-publicly verifiable if

• the probability that Justin accepts but Alice does not obtain the correct outcomes is less than ϵ when she follows
the protocol and

• whatever she knows and tries to obtain about the outcomes, with and without messages she obtains in the
protocol, the difference in probabilities that Alice succeeds in obtaining it is less than δ when Justin rejects and
Bob follows the protocol

when Justin follows the protocol and the computational ability of Alice does not exceed one of a probabilistic classical
computer. Note that while computational ability of Alice is limited, she can borrow partially the computational power
of Bob by delegating carefully chosen computation. We say unconditionally (ϵ, δ)-publicly verifiable if the condition
about her computational ability is omitted.
Precisely speaking, public verifiability does not guarantee that evil party does not affect Justin. If evil Alice

abandons her attempt to obtain computation results, she is able to make Justin reject wrongly. Moreover, if evil Alice
delegates some computation to another quantum server, she can use the outcome to cheat Justin. However, in either
case, she cannot benefit from the cheating. In the former case, she cannot get the computation results, and, in the
latter case, she has to pay the server for the outcome, otherwise she cannot obtain it. Therefore, we ignore this kind
of attacks. In other words, we assume that evil Alice always tries to both obtain computation results and make Justin
reject, and that evil Bob always attempts to make Justin accept incorrect outcomes.
Now, we prove our protocol is publicly verifiable. For detection of Alice’s lie, we put three additional assumptions:

(i) Alice does not have any quantum device other than a single qubit generator,

(ii) the number of qubits is polynomial in the security parameter, and

(iii) the computational assumptions in the requirement 4.

Note that (ii) and (iii) are standard assumptions.

Theorem 2. Let ϵ be the probability that Bob succeeds in deceiving Alice in FK protocol, and δ be a negligible function.
Under the above assumptions, if classical public-key cryptography satisfies the requirements 1–4, then our protocol is
computationally (ϵ, δ)-publicly verifiable.

Proof. Since what Justin does in the public verification procedure is the same as what Alice does, Justin can detect
Bob’s cheat if and only if Alice can detect the cheat, provided that Alice follows the protocol. The proof of the
previous theorem shows the first condition of public verifiability is satisfied.
Suppose that Bob follows the protocol and that Alice obtains the outcomes but succeeds in making Justin reject.

Since Bob is honest, when Bob announces the secret-key sk, Justin always accepts. Hence, Alice has to obtain the
measurement results without sk. The assumption (i) rejects that Alice entangles Bob’s system and her own system,
and read the measurement results out, and therefore her strategy should be classical. The requirement 4 and the
assumptions (ii), (iii) guarantee that information that Alice can extract is negligible.

c. Cryptography We proved that computationally publicly verifiable BQC protocol exists if there exists cryptog-
raphy having good properties. We show that such cryptography really exists.
We use bitwise encryption using ElGamal cryptography [6] with inattentive evaluations [23]. While ElGamal

cryptography is known to be multiplicatively homomorphic, it is ill-defined in our setting. As we use bitwise encoding,
it is enough for the computation (2) to evaluate a formula (α1∨α2)⊕ (α3∨α4) where αj ∈ {0, 1, bXi , bZi ,¬bXi ,¬bZi}.
In order to evaluate it, we use inattentive evaluations, which make secret evaluations of log-depth circuits possible
using inductive construction. Furthermore, although ElGamal cryptography is proved to be semantic secure [25], it is
not proved to be secure when a plaintext is related to a secret-key as far as we know. As inattentive evaluations enable
Bob to encrypt every measurement results by different public-keys, we employ the update so that cryptography is
secure against such an attack. That is, Bob encrypts the ith measurement result by the ith public-key and he sends the
public-key together with the ciphertext. Precisely speaking, it deviates from the description of our protocol, but this
modification obviously does not affect the proofs of the properties. Inattentive evaluations require Bob to send (0, 1)
or (1, 0) instead of 0 or 1, respectively, so evil Bob sends ill-formed messages such as (0, 0) and possibly obtains partial
information about dependency of the above logical formula on bXi and bZi . Although a non-interactive zero-knowledge
proof [3] was employed in the original paper [23], we do not use it, because it needs an additional assumption that all
parties share a common reference string. We modify inattentive evaluations such that Alice encodes a bit 0 or 1 using
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the received message and uses it instead of the plain bit. It can make her message completely meaningless when once
Bob sends an ill-formed message.
Now, we describe details.

• To generate the ith key-pair, Bob chooses a prime pi where 2pi+1 is also a prime. Let Gi be the cyclic subgroup
of Z2pi+1 whose order is pi. The ith public-key is a trio of pi, a randomly chosen generator gi ∈ Gi, and a
randomly chosen element gxi

i ∈ G. The associated secret-key is xi ∈ Zpi .

• To encrypt a bit 0, Alice or Bob chooses a random value r ∈ Zpi and computes 0∗i ≡ (gxir
i , gri ). A ciphertext of

a bit 1 is 1∗i ≡ (gmi gxir
i , gri ) where r and m are randomly chosen from Zpi and Z∗

pi
respectively.

• Alice can randomise a ciphertext b∗i = (gli, g
r
i ) even though she does not know the plaintext. She chooses random

values y and z from Z∗
pi

and Zpi respectively, and computes a new ciphertext ((gli)
y
gxiz
i , (gri )

ygzi ). The ciphertext
has the plaintext b but it is completely random.

Now, suppose Bob sends (b∗j , c
∗
j ) as the jth measurement result where cj is expected to be ¬bj , and Alice tries to

compute the ith measurement angle.

1. In the zeroth level, Alice encodes a bit into four pairs of bits: 0 or 1 into exactly three pairs of the four have
the same or different bits, respectively. Explicitly, she creates 0j ,1j ,bj ,¬bj where

0j ≡ {(b∗j , 0∗j ), (c∗j , 0∗j ), (b∗j , b∗j ), (b∗j , b∗j )} (4)

1j ≡ {(b∗j , 0∗j ), (c∗j , 0∗j ), (b∗j , c∗j ), (b∗j , c∗j )} (5)

bj ≡ {(b∗j , 0∗j ), (b∗j , 0∗j ), (b∗j , b∗j ), (b∗j , c∗j )} (6)

¬bj ≡ {(c∗j , 0∗j ), (c∗j , 0∗j ), (b∗j , b∗j ), (b∗j , c∗j )}. (7)

To flip the bit, Alice exchanges the first elements in every pairs. Note that flipping 0j , Alice obtains 1j in a
different order. Hence, with a permutation, a bit flip correctly works.

2. In the first level, Alice uses an i-length bit sequence whose bit summation denotes its value. For bXi , she creates
an i-length sequence {aj}j<i where aj is bj if j ∈ Xi, and otherwise 0j . To denote the negation of it, she flips
just the value of a0.

3. The encoding of the second level is the same as the zeroth level. She encodes α∨β into {(α, 0), (β, 0), (α,β), (1, 0)}.

4. In the third level, she forms a pair of them as does in the first level.

5. Finally, she obtains the evaluation result of her desired formula. She randomises the result so that it does
not reveal any information except its bit value. At each level, appropriate permutations and bit flips make an
encoded bit completely random, preserving its bit value. Note that Alice cannot permute the elements in the
first level. If she does, Bob cannot decrypt them.

Theorem 3. The above construction satisfies all requirements

Proof. Satisfying the requirement 1 is a straightforward consequence of a property of inattentive evaluations that
all log-depth circuits can be evaluated. Since being a prime and being an element of a prime order cyclic group is
computable in deterministic polynomial time, Alice can check validity of given public-keys and ciphertexts. Moreover,
if Bob sends (0∗j , 0

∗
j ) or (1∗j , 1

∗
j ) instead of (0∗j , 1

∗
j ) or (1∗j , 0

∗
j ), then a message of Alice will be completely random.

Indeed, 0j = 1j = bj = ¬bj when bj = cj , and the bit flip of it does not change the form. Thus, our construction
meets the requirement 2. The requirement 3 is obviously satisfied. Finally, we show the construction satisfies the
requirement 4. The security of ElGamal cryptography [25] was proved only when the plaintext does not depend on
the secret-key. Since a quantum computer computes discrete-logarithm efficiently [24], given a public-key of ElGamal
cryptography, a quantum computer can compute its secret-key, and thus the measurement results possibly depend on
the secret-key. However, since Bob encrypts the ith measurement result using the ith public-key, he can generate the
public-key after obtaining the result, which is obviously independent from the public-key. Hence, from the security
of ElGamal cryptography and inattentive evaluations [23], we conclude that the requirement 4 is satisfied.
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IV. DISCUSSION

We proposed a new verifiable BQC protocol based on FK protocol. Compared with FK protocol, our protocol
preserves all properties of FK protocol without any additional assumption and furthermore has public verifiability.
However, in order to achieve public verifiability, our protocol puts several assumptions and needs messages longer.
In particular, to allow Justin to detect Alice’s cheat, we assume that her quantum devices are only a single qubit
generator. Indeed, we used the assumption to derive two facts: her computational ability is the same as a classical
computer and she cannot extract non-negligible information about the measurement results from Bob’s resource
directly. Thus, the assumption can be weakened as far as the above two facts are derived, e.g. she could measure a
qubit, have any single qubit device, and generate constant-size entangled qubits. Moreover, the second disadvantage
also is not serious. Although the messages are long in our protocol, they are polynomial in the size of the messages
in FK protocol. Furthermore, we can use homomorphic cryptography [8, 10, 21] and can reduce the size if we make
blindness hold under some assumptions [11] or give up perfect blindness [5].

In order to add public verifiability, we required Bob to commit to his computation results. Another choice is a
commitment by Alice: before starting an original protocol, she commits to traps that she chooses, and she reveals
them after the protocol. However, since she receives computation results before revealing the committed value, this
method allows Alice to borrow the power of Bob’s quantum computer without any restriction and she can use it to
break binding. Hence, the method requires binding to be secure against such attacks. An unconditionally secure
bit commitment scheme [12–14] is a possible solution and it seems that it achieves unconditional public verifiability.
However, it requires that Alice and Bob each prepare agents in a distant place. The agents should be trusted, and if
the agent of Alice betrays her, verifiability no longer holds. It should be emphasised that our protocol needs no such
assumption for verifiability.
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