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Abstract

We show that a family of quantum authentication protocols introduced in [Barnum et al.,
FOCS 2002] can be used to construct a secure quantum channel and additionally recycle all of the
secret key if the message is successfully authenticated, and recycle part of the key if tampering is
detected. We give a full security proof that constructs the secure channel given only insecure noisy
channels and a shared secret key. We also prove that the number of recycled key bits is optimal
for this family of protocols, i.e., there exists an adversarial strategy to obtain all non-recycled bits.
Previous works recycled less key and only gave partial security proofs, since they did not consider
all possible distinguishers (environments) that may be used to distinguish the real setting from
the ideal secure quantum channel and secret key resource.

A full version of this work can be found on the arXiv [Por17].

1 Reusing a one-time pad

A one-time pad can famously be used only once [Sha49], i.e., a secret key as long as the message
is needed to encrypt it with information-theoretic security. But this does not hold anymore if the
honest players can use quantum technologies to communicate. A quantum key distribution (QKD)
protocol [BB84, SBPC+09] allows players to expand an initial short secret key, and thus encrypt
messages that are longer than the length of the original key. Instead of first expanding a key, and
then using it for encryption, one can also swap the order if the initial key is long enough: one first
encrypts a message, then recycles the key. This is possible due to the same physical principles as
QKD: quantum states cannot be cloned, so if the receiver holds the exact cipher that was sent, the
adversary cannot have a copy, and thus does not have any information about the key either, so it
may be reused. This requires the receiver to verify the authenticity of the message received, and if
this process fails, a net key loss occurs— the same happens in QKD: if an adversary tampers with
the communication, the players have to abort and also lose some of the initial secret key.

2 Quantum authentication and key recycling

Some ideas for recycling encryption keys using quantum ciphers were already proposed in 1982 [BBB82].
Many years later, Damg̊ard et al. [DPS05] (see also [DPS14,FS17]) showed how to encrypt a classical
message in a quantum state and recycle the key. At roughly the same time, the first protocol
for authenticating quantum messages was proposed by Barnum et al. [BCG+02], who also proved
that quantum authentication necessarily encrypts the message as well. Gottesman [Got03] then
showed that after the message is successfully authenticated by the receiver, the key can be leaked
to the adversary without compromising the confidentiality of the message. And Oppenheim and
Horodecki [OH05] adapted the protocol of [BCG+02] to recycle key. But the security definitions
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in these initial works on quantum authentication have a major flaw: they do not consider the
possibility that an adversary may hold a purification of the quantum message that is encrypted.
This was corrected by Hayden, Leung and Mayers [HLM11], who give a composable security defini-
tion for quantum authentication with key recycling. They then show that the family of protocols
from [BCG+02] are secure, and prove that one can recycle part of the key if the message is accepted.

The security proof from [HLM11] does however not consider all possible environments. They
restrict their analysis to so-called substitution attacks — where the adversary obtains a valid pair of
message and cipher and attempts to substitute the cipher with one that will decode to a different
message— but ignore impersonation attacks — where the adversary directly sends a forged cipher
to the receiver, without knowledge of a valid message-cipher pair. To the best of our knowledge,
there is no proof showing that security against impersonation attacks follows from security against
substitution attacks, hence the literature analyzes both attacks separately.1 This is particularly
important in the case of composable security, which aims to prove the security of the protocol when
used in any arbitrary environment, therefore also in an environment that first sends a forged cipher
to the receiver, learns wether it is accepted or rejected, then provides a message to the sender to be
authenticated, and finally obtains the cipher for this message. This is all the more crucial when
key recycling is involved, since the receiver will already recycle (part of) the key upon receiving the
forged cipher, which is immediately given to the environment. The work of Hayden et al. [HLM11]
thus does not provide a complete composable security proof of quantum authentication, which
prevents the protocol from being composed in an arbitrary environment.2

More recently, alternative security definitions for quantum authentication have been proposed,
both without [DNS12,BW16] and with [GYZ16] key recycling (see also [AM16]). These still only
consider substitution attacks, and furthermore, they are, strictly speaking, not composable. While it
is possible to prove that these definitions imply security in a composable framework (if one restricts
the environment to substitution attacks), the precise way in which the error ε carries over to the
framework has not been worked out in any of these papers. If two protocols with composable errors
ε and δ are run jointly (e.g., one is a subroutine of the other), the error of the composed protocol is
bounded by the sum of the individual errors, ε+ δ. If a security definition does not provide a bound
on the composable error, then one cannot evaluate the new error after composition.3 For example,
quantum authentication with key recycling requires a backwards classical authentic channel, so that
the receiver may tell the sender that the message was accepted, and allow her to recycle the key. The
error of the complete protocol is thus the sum of errors of the quantum authentication and classical
authentication protocols. Definitions such as those of [DNS12,BW16,GYZ16] are not sufficient to
directly obtain a bound on the error of such a composed protocol.

3 Contributions

In this work we use the Abstract Cryptography (AC) framework [MR11] to model the composable
security of quantum authentication with key recycling. AC views cryptography as a resource theory:
a protocol constructs a (strong) resource given some (weak) resources. For example, the quantum
authentication protocols that we analyze construct two resources: a secure quantum channel— a
channel that provides both confidentiality and authenticity — and a secret key resource that shares a
fresh key between both players. In order to construct these resources, we require shared secret key,
an insecure (noiseless) quantum channel and a backwards authentic classical channel. These are

1In fact, one can construct examples where the probability of a successful impersonation attack is higher than the
probability of a successful substitution attack. This can occur, because any valid cipher generated by the adversary is
considered a successful impersonation attack, whereas only a cipher that decrypts to a different message is considered
a successful substitution attack.

2For example, QKD can be broken if the underlying authentication scheme is vulnerable to impersonation attacks,
because Eve could trick Alice into believing that the quantum states have been received by Bob so that she releases
the basis information.

3In an asymptotic setting, one generally does not care about the exact error, as long as it is negligible. But for any
(finite) implementation, the exact value is crucial, since without it, it is impossible to set the parameters accordingly,
e.g., how many qubits should one send to get an error ε ≤ 10−18.
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all resources, that may in turn be constructed from weaker resources, e.g., the classical authentic
channel can be constructed from a shared secret key and an insecure channel, and noiseless channels
are constructed from noisy channels.

We thus first formally define the ideal resources constructed by the quantum authentication
protocol with key recycling— the secure channel and key resource mentioned in this introduction—
as well as the resources required by this construction. We then prove that a family of quantum
authentication protocols proposed by Barnum et al. [BCG+02] satisfy this construction, i.e., no
distinguisher (called environment in UC) can distinguish the real system from the ideal resources
and simulator except with an advantage ε that is exponentially small in the security parameter.
This proof considers all distinguishers allowed by quantum mechanics, including those that perform
impersonation attacks.

We show that in the case where the message is accepted, every bit of key may be recycled. And
if the message is rejected, one may recycle all the key except the bits used to one-time pad the
cipher.4 We prove that this is optimal for the family of protocols considered, i.e., an adversary may
obtain all non-recycled bits of key. This improves on previous results, which recycled less key and
only considered a subset of possible environments. More specifically, Hayden et al. [HLM11], while
also analyzing protocols from [BCG+02], only recycle part of the key in case of an accept, and lose
all the key in case of a reject. Garg et al. [GYZ16] propose a new protocol, which they prove can
recycle all of the key in the case of an accept, but do not consider key recycling in the case of a
reject either. The protocols we analyze are also more key efficient than that of [GYZ16]. We give
two instances which need Θ(m+ log 1/ε) bits of initial secret key, instead of the Θ((m+ log 1/ε)2)
required by [GYZ16], where m is the length of the message and ε is the error. Independently from
this work, Alagic and Majenz [AM16] proved that one of the instances analyzed here satisfies the
weaker security definition of [GYZ16].

We then give two explicit instantiations of this family of quantum authentication protocols. The
first is the construction used in [BCG+02], which requires an initial key of length 2m+ 2n, where m
is the length of the message and n is the security parameter, and has error ε ≤ 2−n/2+1

√
2m/n+ 2.

The second is an explicit unitary 2-design [Dan05, DCEL09] discovered by Chau [Cha05], which
requires 5m + 4n bits of initial key5 and has error ε ≤ 2−n/2+1. Both constructions have a net
loss of 2m+ n bits of key if the message fails authentication. Since several other explicit quantum
authentication protocols proposed in the literature are instances of this family of schemes, our
security proof is a proof for these protocols as well.

Finally, we show how to construct the resources used by the protocol from nothing but insecure
noisy channels and shared secret key, and calculate the joint error of the composed protocols. We
also show how to compensate for the bits of key lost in the construction of the backwards authentic
channel, so that the composed protocol still has a zero net key consumption if no adversary jumbles
the communication.

A full version of this work can be found on the arXiv [Por17].
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