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We present a quantum secret sharing protocol on a given state close to the Greenberger-

Horne-Zeilinger state, and use an inequality derived from the Mermin inequality to determine

whether players in our protocol securely achieve perfectly correlated classical bits. Therefore,

we show that if our inequality holds then the players can securely share a classical secret by

our protocol.

Quantum information theory provides us with unconditionally secure communication between

two remote parties. However, there are many communication protocols for three or more par-

ties. So, it can be an interesting question to ask whether quantum information theory can make

communication for three or more parties such as secret sharing [1, 2] unconditionally secure.

In order to find an unconditionally secure quantum secret sharing (QSS) protocol, we begin

with the original QSS protocol proposed by Hillery, Bužek and Berthiaume [3], in which they have

dealt with the N -qubit Greenberger-Horne-Zeilinger (GHZ) state [4] |Ψ+
0 ⟩ = 1√

2

(
|0⟩+ |2N − 1⟩

)
,

and each player measures |Ψ+
0 ⟩ in the X basis or the Y basis. If an even number of players measure

the state in the Y basis, then they can have a perfect correlation of classical bits to perform secret

sharing of classical information. However, since it is difficult for N players to share the state |Ψ+
0 ⟩,

we need to find out if there is a QSS protocol for N players even though they share a state close

to |Ψ+
0 ⟩.

Let us suppose that Alice, Bob, and Charlie share a three-qubit state which is close to |Ψ+
0 ⟩,

and they perform the original QSS protocol on the three-qubit state. Then since Bob or Charlie

should not know anything about Alice’s information with their own information alone in QSS, the

mutual information I(mA : mB) and I(mA : mC) must be zero, where mA, mB, and mC are the

measurement outcomes of Alice, Bob, and Charlie, respectively. But, this does not hold in general.

For example,

ρABC = p |Ψ+
0 ⟩ ⟨Ψ

+
0 |+ (1− p) |Ψ+

1 ⟩ ⟨Ψ
+
1 |

+
√
p(1− p)

(
|Ψ+

0 ⟩ ⟨Ψ
+
1 |+ |Ψ+

1 ⟩ ⟨Ψ
+
0 |
)
, (1)
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where |Ψ+
1 ⟩ = 1√

2
(|001⟩+ |110⟩). In this case,

I(mA : mB) =
1

2
− 1

2
h

(
1

2
+
√

p(1− p)

)
, (2)

where h(·) is the binary entropy. Thus we can clearly see that if p ̸= 1, then the mutual information

is not zero.

We note that an arbitrary N -qubit state can be depolarized to the GHZ diagonal state of the

form

ρN = λ+
0 |Ψ+

0 ⟩ ⟨Ψ
+
0 |+ λ−

0 |Ψ−
0 ⟩ ⟨Ψ

−
0 |

+

2N−1−1∑
j=1

λj

(
|Ψ+

j ⟩ ⟨Ψ
+
j |+ |Ψ−

j ⟩ ⟨Ψ
−
j |
)

(3)

by means of local operations and classical communication (LOCC) [5], where

|Ψ±
j ⟩ =

1√
2

(
|j⟩ ± |2N − 1− j⟩

)
(4)

and λ+
0 + λ−

0 + 2
∑

j λj = 1, and that if N players share this state, then they obtain I(mi :

mj1 ⊕mj2 ⊕ · · · ⊕mjt) = 0 for distinct i, j1, · · · , jt (1 ≤ t ≤ N − 2), where mk is the measurement

outcome of the kth player. In this paper, we hence suggest that N players change a given state to

the GHZ diagonal state in Eq. (3) by using LOCC, and then perform the original QSS protocol on

the state.

In addition, we need another process to determine if N players securely achieve perfectly corre-

lated classical bits from measurement outcomes in QSS on the state in Eq. (3). As a tool of such a

process, we use an inequality derived from the Mermin inequality [6]. Since N players can estimate

all values in our inequality from randomly chosen outcomes of local measurements in QSS, we can

show that if our inequality is satisfied then N players can securely carry out QSS.

We now introduce our QSS protocol. To begin with, let us assume that N players share

sufficiently many copies of an N -qubit state.

• Depolarization: N ≥ 3 players, A1, A2, · · · , AN , depolarize each of the initial states to

the state of the form in Eq. (3) by LOCC.

• Measurement: Each player Ai measures his/her particles of the depolarized states in the

X or Y basis. Then they publicly announce on which basis they used.

• Sifting: A1, A2, · · · , AN discard their measurement results if an odd number of players

measured in the Y basis.
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• Security check: N players randomly choose half of the sifted measurement results. For

each of randomly chosen ones, let ai and bi be the ith player’s measurement outcome, in

the cases that the number of players who measured in the Y basis is a multiple of four

and is congruent to two modulo four, respectively. Players calculate the averages Ā and

B̄ of (−1)
∑

i ai and (−1)
∑

i bi over the randomly chosen measurement results, respectively.

The protocol aborts if Ā − B̄ ≤ q, where q ∈ [0.5, 1] is the unique solution of the equation

h
(
1
2(1− q)

)
− h(q) = 1. In fact, q ≈ 0.84865.

• Post-processing: N players securely share perfectly correlated classical bits by applying

classical error correction and privacy amplification.

Lemma 1. If Ā − B̄ > q, then each legitimate player in our QSS protocol has a strictly positive

asymptotic key rate with high probability.

By Lemma 1, we can conclude that it is possible to achieve secure QSS by exploiting our

protocol.
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