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It is very likely that when a universal quantum computer will finally become available, it will be hosted by large
institutions and accessed remotely by clients. For example, companies like D-Wave [1] and IBM [2], as well as academic
institutions including the University of Bristol [3], have begun making their quantum devices available for remote
access. This situation will inevitably lead to questions as to the integrity and privacy of the client’s computation. In
the past, quantum protocols have been proposed to address similar problems. Protocols which provide security of
client’s quantum computation, as well as input and output, are known as blind quantum computing protocols [4–7].
Similarly, protocols which capture the idea of verification of quantum computing, i.e., the ability to detect, with very
high probability, any attempt by a malicious server to deviate from the computation are known as verifiable quantum
computing protocols [8–10]. A common feature among known protocols for these tasks is that either the client require
a small quantum device on their side or there must exist at least two non-communicating quantum servers [11, 12].
In other words, there is a requirement that two or more parties involved in the protocol possess quantum processors.
Ideally, we would like to have a secure delegated quantum computing protocol between a completely classical client
and a quantum server. In this work, we take the first steps towards this problem. We construct a blind quantum
computing protocol which maintains security of the client’s computation even against the quantum server. In the
next section, we briefly describe our main ideas and results, but the full details can be found in [13].

Main Ideas and Results

Our aim is to explore the possibility of blind quantum computation with a purely classical client. We demon-
strate this fact by constructing a protocol for a task we call as classically driven blind quantum computing (CD-
BQC) and analyse its security in the stand-alone setting. Our protocol uses measurement-based quantum computing
(MBQC) [14] as the underlying principle. We show that the protocol allows a client to hide non-trivial information
about their computation from the powerful quantum server by making use of a novel technique that we call flow ambi-
guity. In particular, we analyse the case of a single instance of the protocol and show that the amount of information
obtained by the server is bounded below what is necessary to unambiguously distinguish the computation.

In the MBQC framework we denote by ∆ the computation of the client such that ∆ = {G,α,f}. Here G denotes
the graph state, α is the set of measurement angles on the graph state, and f represents the information flow [15]
which captures how angles are to be adapted based on results of previous measurements. Formally, generalised
information flow or g-flow [16] is defined as follows: For an open graph G(I,O), there exists a g-flow (g,�) if one
can define a function g : Oc → P (Ic) and a partial order � on V such that ∀i ∈ Oc, all of the following conditions hold:

(G1) if j ∈ g(i) and j 6= i, then j � i;
(G2) if j � i and i 6= j, then j /∈ Odd(g(i)); and
(G3) i /∈ g(i) and i ∈ Odd(g(i)).

Intuitively, g-flow is used to assign a set of local corrections to a subset of unmeasured qubits to ensure deterministic
computation, despite the random nature of the measurement outcomes obtained during the computation. It is
important to note that for a fixed graph there exist multiple choices of the input and output vertex sets that result
in deterministic measurement patterns consistent with the same fixed total ordering of vertices. Specifically, we show
that the transcript of any run of the protocol is consistent with multiple non-equivalent computations. This is due
to the fact that the information about the g-flow for the underlying resource state is hidden from the server. This
particular ambiguity in the flow enables the classical user to hide the essential aspects of the computation.

The CDBQC protocol is interactive and proceeds as follows. Firstly, the client sends the dimension of the graph
to the server to prepare the graph state |G〉. At each step i: Client chooses a bit ri uniformly random. Using ri and
the previous measurement outcome b<i′ , client updates the angle αi to construct α′i in the following way:

α′ = (−1)s
x

α+ (r ⊕ sz)π
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where sx and sz denote the corrections dictated by flow based on previous measurement results. The server performs

a projective measurement of i-th vertex in the XY-plane of the Bloch sphere, denoted M
α′
i

i = {|±α′
i
〉〈±α′

i
|}, where

{|±α′〉} = 1√
2
(|0〉 ± eiα′ |1〉) and sends the measurement outcome b′i to the client. The client records bi = b′i ⊕ ri in

b and then updates the set (sx, sz). If the i-th vertex is output qubit then the bit bi is registered in the set pCB .
The client and the server repeat this procedure for all the vertex of the graph in the given total order. The client
implements the final round of corrections on the string pC (equivalent to pCB in the case of honest server) to obtain the
output string p. At the end of the protocol, the server possesses information about the angles α′ and the measurement
outcome b′ and whereas the client’s secret consists of the actual measurement angle α and the flow bits f . Hereafter
we will denote the variables with the upper-case letters and particular instances of such variable with the lower-case
letters. For example, A will be used to denote the angle variable and F is used to represent the flow variable. For
simplicity, let’s take the case when A and F are uniformly variables. We quantify the amount of information that on
average remains hidden from the server about the client’s computation at the end of the protocol. This is given by
the conditional entropy H(A,F |B′,A′).

H(A,F |B′,A′) = H(A,F )− I(B′,A′;A,F ). (1)

where H(A,F ) = H(A) + H(F ) := log2NA + log2NF . Here NA and NF denote the number of possible choices
for the angle and flow variable respectively. Using tools from information theory we explicitly calculate that, in a
single run of CDBQC protocol, the mutual information between the client’s secret input (α, f) and the information
received by the server (α′, b′) is bounded by

I(B′,A′;A,F ) ≤ H(A′)

This in turn gives a lower bound on the conditional entropy

H(A,F |B′,A′) ≥ log2NF (2)

We derive a non-trivial lower bound on the conditional entropy by calculating the value of NF . Note that flow
is a property of the underlying graph and therefore depends on the chosen graph G. We will consider the case of
cluster states as they are known to be universal for quantum computation with (X, Y)-plane measurements [17]. To
calculate NF for the cluster state, we put a lower bound on the number of different input and output choices (open
graphs) #G(I,O)n,m satisfying flow conditions for a cluster state and a certain fixed total order. Mathematically,
this corresponds to calculating the flows that satisfy the conditions (G1)-(G3) as mentioned above. To simplify the
counting argument we put an additional constraint:

(G4) If k ∈ N (i) ∪N (j), and if k ∈ g(i), then k /∈ g(j).

This is not required strictly by the definition of g-flow, but it simplifies the flow counting problem and so we obtain
a lower bound on the number of flows rather than the exact number. For a generic cluster state G(n,m) with the fixed
total ordering of measurements, the number of different open graphs G(I,O) satisfying the conditions (G1)- (G4) is
given by:

#G(I,O)n,m = F
|n−m|
2min(n,m)+1

min(n,m)∏
µ=2

F 2
2µ. (3)

where Fi is the ith Fibonacci number. Further simplifying the above equation gives us #G(I,O)n,m = 22N log2 φ+O(Nε)

for ε < 1, N = nm and assuming m = poly(n). This shows that there exists at least an exponential number (in the
dimension of the graph) of information flows corresponding to a cluster state for a given total order of measurements.
To demonstrate this we take a simple example of 2 × 2 cluster state G(I,O)(2×2) in Figure 1. The figure shows 9
possible open graphs compatible with the flow conditions (G1)-(G4). In general different flows correspond to different
computations.

Using the following relation NF ≥ #G(I,O)n,m with the the above result, we get log2NF ≥ log2 #G(I,O)n,m ≈
1.388N . Therefore, the conditional entropy is given by

H(A,F |B′,A′) ≥ 1.388N. (4)

This shows that it is indeed possible for a client to hide their chosen computation, by using the ambiguity in the
flow of information, from a quantum server. Importantly, we show that it is not possible for the quantum server to
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FIG. 1: All the possible G(I,O)2,2 combinations that satisfy g-flow conditions for the 2×2 cluster state are shown. The arrows
indicate the direction of the quantum information flow. Note that overlapping input and output sets are allowed. All patterns
implement unitary embeddings on the input state.

guess the client’s computation perfectly, since a large number of other computations are still compatible with the
information server receives.

For more details, we refer to the arxiv version of this work [13] and references therein.

[1] D-Wave. https://www.dwavesys.com/
[2] IBM. The quantum experience. URL http://www.research.ibm.com/quantum/
[3] Quantum in the Cloud. http://www.bristol.ac.uk/physics/research/quantum/engagement/qcloud/
[4] Childs, A. M. (2005). Secure assisted quantum computation. Quantum Information & Computation, 5(6), 456-466.
[5] Arrighi, P., & Salvail, L. (2006). Blind quantum computation. International Journal of Quantum Information, 4(05),

883-898.
[6] Broadbent, A., Fitzsimons, J., & Kashefi, E. (2009, October). Universal blind quantum computation. In Foundations of

Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on (pp. 517-526). IEEE.
[7] Morimae, T., & Fujii, K. (2013). Blind quantum computation protocol in which Alice only makes measurements. Physical

Review A, 87(5), 050301.
[8] Fitzsimons, J. F., & Kashefi, E. (2012). Unconditionally verifiable blind computation. arXiv preprint arXiv:1203.5217.
[9] Broadbent, A. (2015). How to verify a quantum computation. arXiv preprint arXiv:1509.09180.

[10] Hayashi, M., & Morimae, T. (2015). Verifiable measurement-only blind quantum computing with stabilizer testing. Physical
review letters, 115(22), 220502.

[11] Reichardt, B. W., Unger, F., & Vazirani, U. (2013). Classical command of quantum systems. Nature, 496(7446), 456-460.
[12] Fitzsimons, J. F. (2016). Private quantum computation: An introduction to blind quantum computing and related proto-

cols. arXiv preprint arXiv:1611.10107.
[13] Mantri, A., Demarie, T. F., Menicucci, N. C., & Fitzsimons, J. F. (2016). Flow ambiguity: A path towards classically

driven blind quantum computation. arXiv preprint arXiv:1608.04633.
[14] Raussendorf, R., & Briegel, H. J. (2001). A one-way quantum computer. Physical Review Letters, 86(22), 5188.
[15] Danos, V., & Kashefi, E. (2006). Determinism in the one-way model. Physical Review A, 74(5), 052310.
[16] Browne, D. E., Kashefi, E., Mhalla, M., & Perdrix, S. (2007). Generalized flow and determinism in measurement-based

quantum computation. New Journal of Physics, 9(8), 250.
[17] Mantri, A., Demarie, T. F., & Fitzsimons, J. F. (2017). Universality of quantum computation with cluster states and (X,

Y)-plane measurements. Scientific Reports, 7.


