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Abstract

Cryptographic hash functions are fundamental primitives widely used in practice. For such a
function f : {0, 1}n → {0, 1}m, it is nearly impossible for an adversary to produce the hash
f(x) without knowing the secret message x ∈ {0, 1}n. Unfortunately, all hash functions are
vulnerable under the side-channel attack, which is a grave concern for information security in
practice. This is because typically m � n and an adversary needs only m bits of information
to pass the verification test.

In sharp contrast, we show that when quantum states are used, the leakage allowed can
be almost the entire secret. More precisely, we call a function that maps n bits to m qubits a
quantum cryptographic function if the maximum fidelity between two distinct hashes is negligible
in n. We show that for any k = n− ω(log n), all quantum cryptographic hash functions remain
cryptographically secure when leaking k bits of information. By the quantum fingerprinting
constructions of Buhrman et al. (Phys. Rev. Lett. 87, 167902), for all m = ω(log n), there exist
such quantum cryptographic hash functions. We also show that one only needs ω(log2 n) qubits
to verify a quantum cryptographic hash, rather than the whole classical information needed to
generate one.

Our result also shows that to approximately produce a small amount of quantum side infor-
mation on a classical secret, it may require almost the full information of the secret. This large
gap represents a significant barrier for proving quantum security of classical-proof extractors.



1 Introduction

1.1 The problem and the motivation

Cryptographic hash functions are a fundamental primitive used widely in today’s cryptographic
systems. They are considered “workhorses of modern cryptography”1 For simplicity, we focus our
discussions on keyless (cryptographic) hash functions, each of which is an efficiently computable
function h from some message space M to some digest space T [6, 22, 23]. Ideally, we want the
hash function to have the following properties. First, the digest should be much shorter than
the message. Depending on applications, the following security properties are desirable [23]. (1)
Collision resistant: It is computationally infeasible to find a “collision”, i.e., two distinct messages
x and x′, such that h(x) = h(x′). (2) Preimage Resistance: It is computationally infeasible to invert
h. (3) Second Preimage Resistance: Given a message x, it should be computational infeasible to
x′ 6= x with h(x′) = h(x).

Prominent examples of widely used cryptographic hash functions include SHA-256 and SHA-
512, part of the SHA-2 algorithms that were designed by NSA and are US Federal Standards.
These algorithms are used in UNIX and LINUX for secure password hashing, in Bitcoin for proof-
of-work. As a motivating example, we consider how proof-of-work can be carried out through hash.
Suppose that Alice receives a trove of valuable documents x ∈ {0, 1}n, and Bob claims that he was
the person producing and sending it. To prove his claim, he sends Alice a tag t ∈ {0, 1}m, which
supposedly is the result of applying a cryptographic hash function h : {0, 1}n → {0, 1}m on x. Alice
simply checks if t = h(x). Accept if yes, reject otherwise. By the collision resistance property, it is
nearly impossible that Bob can produce h(x) without knowing x.

In practice, there may be information leakage of the message over time due to information
transmission, adversarial attacks, etc. Therefore, it is rather desirable if the hash function is
resilient against information leakage. We ask: how many bits ` about the message x can be leaked
before the adversary is able to forge the tag h(x) easily?

Cleary, ` ≤ m, since if the tag h(x) itself is known to the adversary, he does not need to know
more about x to pass the verification. This is rather disappointing, since m is typically much
smaller than n. We then ask: what if a quantum tag is used instead? If the leakage is quantum,
by the same reasoning, m remains a trivial and rather lower upper-bound on `. This leads us to
our central question: Can a quantum hash function be much more resilient to classical leakage?

1.2 Quantum cryptographic hash functions

By a “quantum hash function,” we simply mean a classical-to-quantum encoding φ : {0, 1}n → C2m

that maps x ∈ {0, 1}n to a pure m-qubit state |φx〉. In a seminal paper, Buhrman et al. [8] intro-
duced the notion of quantum fingerprinting. In their most general form, a quantum fingerprinting
is the following.

Definition 1 (Generalized Quantum Fingerprinting (Buhrman et al. [8])). A function φ : {0, 1}n →
C2m is a (n,m, δ) (generalized) quantum fingerprinting where δ := maxx,x′:x 6=x′ |〈φx|φx′〉|.

We use the convention that φ := |φ〉〈φ| represent the projector for the pure state |φ〉. If one
replaces the predicate h(x) = h(x′) by the fidelity F (φx, φx′) = |〈φx|φx′〉|, one sees that δ precisely
quantify the extent of collision resistance. For concreteness, we define what we mean by quantum
cryptographic hash function as follows. For a function δn ∈ (0, 1), we say δn is negligible in n if
δn ≤ 1/nc for all c > 0 and all sufficiently large n.

1Bob Schneier, https://www.schneier.com/essays/archives/2004/08/cryptanalysis_of_md5.html.
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Definition 2. A (n,m, δ) quantum fingerprinting φ is a quantum cryptographic hash function if
δ = negl(n).

We note that while classical cryptographic hash functions necessarily rely on computational
assumptions for security, their quantum counterparts can achieve the three security properties (1-3)
information-theoretically. We now proceed to formulate our leakage problem precisely. We consider
average case security and model classical side-channel information using a classical-classical (c-c)
state, called the side information state, ηXY :=

∑
x,y px,y|x〉〈x|⊗|y〉〈y| on {0, 1}n×{0, 1}n′ . Here X

is uniformly distributed and Y represents the side information. The largest probability of correctly
guessing X conditioned on Y is pg := pg(X|Y )η :=

∑
y maxx px,y. The conditional min-entropy is

Hmin(X|Y )η := − log pg(X|Y )η. We quantify the amount of leakage by k := n−Hmin(X|Y )η.
The adversary is given the Y sub-system and creates a classical-quantum (cq) state ρXE , called

the forgery state, through local quantum operations on Y . The verification scheme for φ is the
following measurement on XE: V :=

∑
x |x〉〈x| ⊗ φx. The probability of the forgery state to pass

the verification scheme is es := Tr(V ρ). Given the leakage `, the optimal passing probability of a
forgery state is denoted by e∗s := e∗s(`). We can now define security precisely.

Definition 3 (Resilience against classical leakage). A (n,m, δ) quantum cryptographic hash func-
tion φ is said to be σ-resilient against ` bits of classical leakage if for all forgery state ρ obtained
from ` bits of side information, the probability of passing the verification scheme e∗s(`) ≤ σ. If no
σ is specified, it is assumed that σ = negl(n).

1.3 Main Result

We show that quantum cryptographic hash functions can be extremely resilient to classical leakage.
Our main theorem is informally stated below.

Theorem 1.1 (Main Theorem). For all n and k = n − ω(log n), all quantum cryptographic hash
functions are resilient against k bits of classical leakage.

Buhrman et al. [8] showed that for all n and δ ∈ (0, 1), there exists a (n,m, δ) quantum
fingerprinting for m = log n+O(log 1/δ) for which explicit constructions can be derived from [17].
We thus have the following corollary.

Corollary 1.2. For all n, k = n − ω(log n), and m = ω(log n), there exist efficient quantum
cryptographic hash functions resilient to leaking k bits of information.

One drawback of the verification scheme is that the verifier has to get access to full information
about the original message X in order to perform the verification. In some cases this would be
a heavy burden on the verifier. One natural question to ask is that if it is possible to develop a
lightweighted verification scheme where the verifier does not need to read the whole message. More
formally, let the verifier now receive k qubits of advice state and m bits of the forgery state provided
by the adversary. An (n, k,m) verification scheme V would then be a joint measurement on the
advice state together with the forgery state. This generalizes the original verification where k = n
and V =

∑
x |x〉〈x| ⊗ φx.

Out next result shows that, by increasing the hash a little bit we can dramatically reduce the
size of system needed by the verifier:

Theorem 1.3. For all n, fix k = m = ω(log2 n), ` ≤ n − ω(log n). There exists a verification
scheme V acting on k +m qubits, together with an ensemble of k-qubit states {ρx} such that

sup
Y :Hmin(X|Y )≤`

sup
{σY }

EXY Tr[V (ρX ⊗ σY )] ≤ negl(n).
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Arunachalam et al. [3] showed that Ω(n) copies of a quantum cryptographic hash based on
linear codes is necessary to recover the original n-bit classical message, regardless of the length of
the hash itself. Our result shows the complimentary aspect that only ω(log n) copies are sufficient
to ensure that the prover holds the classical message.

Our central technical result is the following. Recall that pg := 2`−n is the optimal guessing
probability of the message conditioned on the `-bit side information.

Lemma 1.4 (Lemma 4.1, informally stated). For any (n,m, δ) quantum fingerprinting φ and any
leakage of ` classical bits, the probability of the forgery state passing the verification scheme satisfies

es ≤ pg + δ.

This implies that

O(pg + δ2) ≤ e∗s ≤ pg + δ, (1.1)

by considering the two cheating strategies of guessing X first (then applying φ) and using a fixed
fingerprint state. Consequently, when δ = negl(n), the above inequality means that e∗s is negligible
if and only if pg is negligible.

Since ` = n − O(log n) is the threshold for pg(`) to be non-negligible, the bounds (1.1) show
for quantum cryptographic hash functions, the leakage resilience can approach the maximum of
n−O(log n) bits.

One counterpart of this result is shown in [3], saying that Ω(n) copies of quantum fingerprints
would be necessary for an adversary to recover the original message with non-negligible probabil-
ity. Thus, the quantum cryptographic hash functions based on fingerprinting have the following
property: The hash itself is efficiently computable, but it is information-theoretically resilient to
recovery of the message from the hash (which requires Ω(n) copies of the hash) and to recovery of
the hash from partial information of the message.

1.4 Implications on quantum-proof randomness extraction

Our result reveals some stark contrast between quantum and classical side information. This differ-
ence shows the difficulty for establishing the quantum security of classical-proof extractors. Roughly
speaking, a randomness extractor is a randomized algorithm which turns a weakly random source
into near uniform [20, 21, 26]. These are fundamental objects with a wide range of applications
in computational complexity, cryptography, and other areas [5, 10, 12, 25, 16]. In particular, they
accomplish the important tasks of privacy amplication [4, 5, 15], by decoupling the correlation
between the output and the side information.

A major open problem in randomness extraction is whether every classical-proof randomness
extractor for k min-entropy sources is secure against quantum adversaries with comparable amount
but quantum side information. Loss of parameter is already shown to be inevitable in [11], but
possibilities still remain in the case where the ranges of parameters are relavant to most typical
applications.

If all quantum side information can be constructed from a comparable amount of classical side
information, we would have resolved this major problem positively. Our result shows that this
approach would necessarily fail. For details, see Section 6.

Theorem 1.5 (Theorem 6.2, informally stated). There exists a family of classical-quantum states
with arbitrarily small amount of quantum side information, yet these quantum states cannot be ap-
proximately constructed from classical side information that is almost a perfect copy of the classical
message.
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1.5 Sketch of Proofs

To prove Separation Lemma 1.4, we first answered the following question (see Section 3): Given a
c-q state, how much classical side information is needed to approximate it up to a given error ε? It
turns out that this quantity, denoted by the conversion parameter, can be simplified to a fairly nice
expression. An important step is to show (in Lemma 3.2) that classical information can without
loss of generality be identifying a subset of the messages, and conditioned on this information, the
messages are uniformly distributed on that subset. At the end, the proof reduces to estimating the
operator norm of

∑
i Ti, where Ti’s are projections to the fingerprint states, thus pairwise almost

orthogonal. Cotlar-Stein Lemma gives us the desired bound.

1.6 Related works.

As mentioned above, Buhrman et al. [8] introduced the notion and provide the constructions of
quantum fingerprinting. The application they focused on is for message identification. For our
cryptographic applications, we are primarily interested in instances of a negligible fidelity. They did
not discuss properties of quantum fingerprinting in an adversarial context like ours. That quantum
fingerprinting satisfies the security properties of cryptographic hash functions was observed and
explored by [1, 27].

Side-channel attack is a major paradigm studied in the classical information security and cryp-
tography community due to its high level of threat in practice [24, 18, 2, 9, 7, 13]. Side-channel
key recovery attack has in particular drawn much attention [24]. However, these classical works
address problems that necessarily require computational assumptions and many other works focus
on the hardware aspects. To the best of our knowledge, this work appears to be the first studying
information theoretical security of quantum cryptography against classical side-channel attack.
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2 Preliminaries

In the subsequent subsections, we summarize the necessary background on quantum information,
probability theory and operator theory. We assume that readers are familiar with linear algebra.
We refer to [19] for more detailed knowledge on quantum information and quantum computation.

2.1 Quantum Information

Quantum States. The state space of a k-qubit system can be characterized as a 2k-dimensional
Hilbert space H ∼= C2k . A k-qubit quantum state is described by a density operator ρ on H, i.e.
a positive semidefinite operator with unit trace. We often use ρ < 0 to denote that ρ is positive
semidefinite. The set of all density matrices on H is then denoted by S=(H) := {ρ < 0|Tr[ρ] = 1}.
Sometimes we are also interested in the set of subnormalized states S≤(H) := {ρ < 0|Tr[ρ] ≤ 1}.

Let L(H) denote the set of all linear operators on H onto itself. For two operators A,B ∈ L(H),
one can define the inner product 〈A,B〉 to be Tr[A†B], A† being the adjoint conjugate of A. Also
we denote the identity operator by I.

The state space for a multipartite system is the tensor of the state space of each individual
system, i.e. a general multipartite state ρABC can be described by a density operator in S=(A ⊗
B⊗ C). For such a state ρ, the marginal state on a subsystem, say ρA, is the partial trace over the
other subsystems, namely ρA = TrBC [ρABC ].

A classical-quantum-, or cq-state is a state of the form

ρXE =
∑
x

|x〉〈x| ⊗ ρx,

where {|x〉} are orthonormal and ρx’s are subnormalized states which sum up to a density matrix.
This is to say, the bipartite state ρXE is classical on the X side while quantum on the E side.
Furthermore, if the E side is also classical, then the state is of the form

ρXE =
∑
x,y

p(x, y)|x〉〈x| ⊗ |y〉〈y|.

Such a state is called a classical-classical- or cc-state. Note that cc-states can be identified as
classical joint distributions.

Quantum Measurement. The most general type of quantum measurement is Positive-operator-
valued measurement (POVM). A POVM is a set of measurements M = {Mo}o∈O, where O is the
set of all outcomes, Mo is positive semidefinite for all o and

∑
o∈OMo = I. For a state ρ, the

probability that the outcome is o under the measurement M is Tr[Moρ].

Quantum Channel. A physically realizable quantum channel CA→B is a completely positive,
trace preserving linear map from L(A) to L(B).

Sometimes we may consider more restrictive quantum channels, such as classical-to-quantum
channels and classical-to-classical channels (note that quantum-to-classical channels can be identi-
fied as measurements). A classical-to-quantum channel CA→B can be written as

C(·) =
∑
a

〈a| · |a〉 · ρa,

where ρa ∈ S=(B). When B is also classical, the channel conincides with the standard definition
of a channel in classical information theory, specified by the conditional distribution pB|A.
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2.2 Probability Theory

Random Source. A distribution X over a finite set X is also called a random source in this
work. Specifically, denote UX the uniform distribution over the set X . For a random source X, we
can define support set

Supp(X) := {x ∈ X |Pr[X = x] > 0},
and guessing probability

pg(X) = max
x

Pr[X = x].

The operational definition of guessing probability is as follows: if one is asked to guess the value
generated by the random source X without any side information, the optimal strategy is to guess
the most probable one, and the winning probability would be pg(X).

Statistical Distance. For two distributions X1, X2 over a finite set X , the statistical distance is
defined to be

∆(X1, X2) :=
1

2

∑
x

|Pr[X1 = x]− Pr[X2 = x]| = max
S⊆X

Pr[X1 ∈ S]− Pr[X2 ∈ S].

The operational definition of statistical distance is as follows: if one is asked to tell whether a given
message x is generated from source X1 or X2, the success probability under optimal strategy is
1+∆(X1,X2)

2 .

Random Source with Classical Side Information. For a joint distribution XY over a set
X ⊗ Y, the guessing probability of X conditioned on Y is given by

pg(X|Y ) := Ey∼Y pg(X|Y = y) =
∑
y

max
x

Pr[X = x, Y = y].

This is to say, upon possessing classical side information y of the random source X, the optimal
strategy to guess the value of X is simply guessing the most probable one conditioned on Y = y.
The overall winning probability would then be pg(X|Y ).

Quantum Random Source. Now suppose that the side information can be quantum, i.e. the
random source X together with the quantum side information ρE form a classical-quantum (cq)
state

ρXE =
∑
x

|x〉〈x| ⊗ ρx,

where theX part is still classical while the E part can be quantum. Note that ρx’s are subnormalized
and they sum up to a normalized state ρE . Then the guessing probability of X conditioned on E
is defined as the guessing probability under an optimal POVM:

pg(X|E)ρ := max
ME→Y

pg(X|Y )(I⊗M)(ρ).

It can be shown using SDP duality that

pg(X|E)ρ = min
σ:∀x,σ<ρx

Tr[σ].

When the number of qubits in the quantum side information is a small number k, we have the
following bound for the guessing probability:

pg(X|E) ≤ pg(X) · 2k.
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2.3 Operator Theory

For an operator K ∈ L(A), define the p-Schatten norm to be

‖K‖p = Tr
[
(K†K)p/2

]1/p
,

for all 1 ≤ p <∞. Some concrete examples are as follows:

• p = 1, then
‖K‖tr = ‖K‖1 = Tr[

√
K†K]

is called the trace norm of K. For two quantum states ρ, σ ∈ S=(A), the trace distance
‖ρ−σ‖tr is the maximum l1-distance of distributions obtained via any quantum measurement.

• p =∞, then the ∞-Schatten norm is defined to be

‖K‖∞ = lim
p→
‖K‖p.

This is also called the operator norm

‖K‖op := sup
v 6=0
‖Kv‖/‖v‖.

In the case that K is positive semidefinite, ‖K‖∞ is the largest eigenvalue of K.

3 Characterizing the Smooth Conversion Parameter

Given a cq state ρXE , we are now interested in determining the least amount of classical correlation,
measured by the conversion parameter, that one needs in order to generate ρ by applying a quantum
channel on the side information.

Definition 4 (Conversion Parameter). Let ρXE ∈ S≤(X ⊗ E) be a cq state. The conversion
parameter of X conditioned on E is defined as

p↓(X|E)ρ := min
ηXY ,C
I⊗C(η)=ρ

pg(X|Y )η.

By monotonicity of guessing probability under quantum channels acting on the side information,
we have p↓(X|E)ρ ≥ pg(X|E)ρ.

The definitions above would be less interesting if we do not allow the existence of an extra error
term ε for the following reason. For a state ρ with the form

ρXE =
∑
x

qx|x〉〈x| ⊗ |ψx〉〈ψx|,

where |ψx〉 for each x are distinct, the only classical side information to generate ρ losslessly would
be the classical message itself; but if we allow that the generated state be ε-close to the desired state
ρ, we may be able to approximate ρ using classical information with significantly lower guessing
probability.

Definition 5 (Smooth Conversion Parameter). Let ε ≥ 0 and ρXE ∈ S=(X ⊗ E). Then the
ε-smooth conversion parameter of X conditioned on E is defined as

pε↓(X|E)ρ := min
ηXY ,C

‖I⊗C(η)−ρ‖tr≤ε

pg(X|Y )η.
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One may wonder if we can derive a good estimate of pε↓(X|E)ρ for given parameter ε. Recall
that for guessing probability pg(X|E)ρ, we have

pg(X|E)ρ = min
σ:∀x,σ<ρx

Tr[σ]

by SDP duality of quantum guessing probability. Similarly, we can prove the following lemma for
smooth conversion parameter:

Lemma 3.1. Let ε ≥ 0 and ρXE =
∑

x |x〉〈x| ⊗ ρx ∈ S=(X ⊗ E), then

pε↓(X|E)ρ = min
pS ,ρ̂S∑

x ‖
∑

x∈S pS ρ̂S−ρx‖tr≤ε

∑
S

pS ,

where S ranges over all nonempty subsets of X .

Before proceeding to the proof of the lemma, we want to first narrow down the set of classical
side information we need to consider.

Lemma 3.2. Let ηXY =
∑

xy pxy|x〉〈x| ⊗ |y〉〈y| be a cc state. Then there exists a cc state η′XS ∈
S=(X ⊗ 2X ) with the following three properties:

1. pg(X|Y )η = pg(X|S)η′;

2. There exists a classical channel CS→Y such that (I ⊗ C)(η′) = η;

3. η′ is of the form

η′ =
∑
S⊆X

pS(
∑
x∈S
|x〉〈x|)⊗ |S〉〈S|.

This lemma implies that, for our purposes, the set of all joint distributions we need to consider
is of the form where the side information only indicates in which set the classical information is
uniformly distributed.

Proof. We provide a constructive proof. For sake of simplicity we will use classical probability
notations, i.e. ηXY will be identified as the classical joint distribution pXY .

All subset of X form a directed acyclic graph under containment relations, therefore we can
recursively define

pS(y) = min
x∈S

p(x, y)−
∑
S(S′

pS′(y)

for all nonempty S ⊆ X . Let p̂S =
∑

y pS(y) and CS = Supp(pS(y)). We claim that the distribution

p′(x, S) = p̂Sδx∈S ,

together with the channel
C(y|S) = pS(y)/p̂S

satisfies our requirements for η′.
First we need to show that p′XS is indeed a distribution, and C is indeed a classical channel. It

suffices to show that pS(y) ≥ 0 for all S and y.
To prove this, we apply induction on size of the set to prove two things:

• pS(y) ≥ 0 for all S and y;
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• For all S1 and S2 where no one contains the other, we have CS1 ∩ CS2 = ∅.

The base case is when |S|, |S1|, |S2| ≥ |X |. Apparently we have S = S1 = S2 = X , so the second
statement is true. For the first one, we have by construction

pX (y) = min
x
p(x, y) ≥ 0.

Let’s move on to the induction step. Assume now that for all S1, S2 where

• |S1|, |S2| > k

• S1, S2 ( S1 ∪ S2

we have pS(y) ≥ 0 for all y and CS1 ∩ CS2 = ∅. Then for a given y and a subset S with |S| = k,
the collection of subsets

{S′|y ∈ Supp(S′), S ( S′}

must form a chain S′1 ( S′2 ( · · · ( S′m under containment relations. Then

pS(y) = min
x∈S

p(x, y)−
∑
S(S′

pS′(y)

= min
x∈S

p(x, y)−
m∑
i=1

pS′i(y)

= min
x∈S

p(x, y)−

(
min
x∈S′1

p(x, y)−
m∑
i=2

pS′i(y)

)
−

m∑
i=2

pS′i(y)

= min
x∈S

p(x, y)− min
x∈S′1

p(x, y)

≥ 0.

Also, for S1, S2 not contained in each other and with size ≥ k, we have

pS1(y) = min
x∈S1

p(x, y)−
∑
S1(S′

pS′(x, y)

=

(
min
x∈S1

p(x, y)− min
x∈S1∪S2

p(x, y)

)
−

∑
S1⊆S′,S2 6⊆S′

pS′(y)

≤ min
x∈S1

p(x, y)− min
x∈S1∪S2

p(x, y)

and similarly
pS2(y) ≤ min

x∈S2

p(x, y)− min
x∈S1∪S2

p(x, y)

using the induction hypothesis pS(y) ≥ 0 for all |S| ≥ k. As

min
x∈S1∪S2

p(x, y) = min{min
x∈S1

p(x, y), min
x∈S2

p(x, y)},

we know that either pS1(y) = 0 or pS2(y) = 0, which results in that y /∈ CS1 ∩ CS2 . As this holds
for an arbitrary y, we must have CS1 ∩ CS2 = ∅. This completes the induction step.

We then proceed to prove that p′ and C satisfies the three properties listed in Lemma 3.2. Note
that property 3 is automatically satisfied by the form of p′, so it suffices to show just the first two
properties.
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1. To see property 1 of Lemma 3.2, note that the guessing probability of p and p′ are respectively
pg(X|Y )p =

∑
y maxx p(x, y) and pg(X|S)p′ =

∑
S p̂S =

∑
y

∑
S pS(y). It then suffices to

prove that
∑

S pS(y) = maxx p(x, y) holds for all y.

One direction is easier to prove: for all x we have∑
S

pS(y) ≥
∑
{x}⊆S

pS(y)

= p(x, y)−
∑
{x}(S

pS(y) +
∑
{x}(S

pS(y)

= p(x, y),

thus
∑

S pS(y) ≥ maxx p(x, y). To prove the other direction, let’s look more in detail into
what we have proved so far. For every subset S, we have shown that the sum

∑
S(S′ pS′(y) can

be reduced to summation on a chain. Without loss of generality, this chain can be completed
to maximal length such that the difference of cardinalities of adjacent terms on this chain is
1, as additional terms would not change the final result. As∑

S

pS(y) =
∑
∅(S

pS(y),

there exists a chain ∅ ( S1 ( · · · ( S|X | = X such that |Si| = i and

∑
S

pS(y) =

|X |∑
i=1

pSi(y).

As |S1| = 1, there must exists x∗ such that S1 = {x∗}. Then

∑
S

pS(y) =

|X |∑
i=1

pSi(y) = p(x∗, y) ≤ max
x

p(x, y),

which proves the opposite direction of property 1.

2. For property 2, denote p′′XY the joint distribution we get from applying C onto p′. We have

p′′(x, y) =
∑
S

p′(x, S)C(y|S)

=
∑
S

δx∈S p̂S · pS(y)/p̂S

=
∑
x∈S

pS(y)

= p{x}(y) +
∑
{x}(S

pS(y)

= p(x, y)−
∑
{x}(S

pS(y) +
∑
{x}(S

pS(y)

= p(x, y).

This proves property 2, which finishes the entire proof of Lemma 3.2.
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With Lemma 3.2, we are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Recall the definition of ε-smooth conversion parameter:

pε↓(X|E)ρ = min
ηXY ,CY→E

‖(I⊗C)(η)−ρ‖≤ε

pg(X|Y )η.

For every η, by Lemma 3.2 there exists η′XS =
∑

S pS(
∑

x∈S |x〉〈x|) ⊗ |S〉〈S| satisfying the three
properties. It is easy to see that η′, with the channel C′ = C◦C, is also a cc state achieving the same
guessing probability and error, and the guessing probability of η′ is

∑
S pS . A general quantum

channel acting on the side information can be characterized as follows without loss of generality:

C′2X→E(·) =
∑
S

〈S| · |S〉ρ̂S .

Then we have
(I ⊗ C′)(η′) =

∑
S

(
∑
x∈S
|x〉〈x|)⊗ pS ρ̂S ,

which leads to
‖(I ⊗ C′)(η′)− ρ‖ =

∑
x

‖
∑
x∈S

pS ρ̂S − ρx‖,

finishing the proof of Lemma 3.1.

4 Proof of Separation Lemma

In this section we provide a proof for our main technical result, the Separation Lemma 4.1.

Lemma 4.1 (Separation Lemma). For all δ > 0, ε ≥ 0 and state

ρXE =
∑

qx|x〉〈x| ⊗ |ψx〉〈ψx|

with maximum overlap
δ = max

x,y:x 6=y
|〈ψx|ψy〉|,

we have
1− ε/2 ≤ (1− δ)pε↓(X|E)ρ + δ.

Regarding the quantum side information as a cryptographic hash function, now let us consider
the following scheme. An adversary, upon receiving some classical leakage of a classical message,
tries to forge a quantum system which looks like the authentic hash. The adversary then sends
this state to a verifier with full knowledge of the classical message, and the verifier, conditioned on
classical information x, performs a projection measurement V on the quantum state provided by
the adversary. We say that the adversary cheats the verifier if the measurement outcome is accept.
Given that the forged state is ε-close to the quantum hash, the passing probability es is clearly
no less than 1 − ε/2, and the probability pg that the adversary can guess the classical message X
correctly is no more than pε↓(X|E)ρ. It then suffices to prove that in this particular scheme, we
have

es ≤ (1− δ)pg + δ.

11



In the proof of Lemma 4.1 we will make use of Cotlar-Stein Lemma, which gives a good estimate
of the operator norm of the sum of near-orthogonal operators. We will attach the proof of the
Cotlar-Stein Lemma in Appendix A for completeness.

Lemma 4.2 (Cotlar-Stein Lemma). For a set of unit vectors {|ψ1〉, |ψ2〉, · · · , |ψn〉} with maximum
fidelity maxi,j:i 6=j |〈ψi|ψj〉| ≤ δ, we have

λmax

(
n∑
i=1

|ψi〉〈ψi|

)
≤ 1 + (n− 1)δ.

Proof of Lemma 4.1. By Lemma 3.1, without loss of generality, we can assume that the joint state
of the classical message and the side information obtained by the adversary is of the form

ρXZ =
∑
S

pS(
∑
x∈S
|x〉〈x|)⊗ |S〉〈S|

where
∑

x∈S pS = qx for all x. It follows then that

pg =
∑
S

pS ,
∑
S

pS |S| = 1.

The adversary then prepares state ρ̂S based on the side information S. We have a precise evaluation
of es:

es =
∑
x

〈ψx|
∑
x∈S

pS ρ̂S |ψx〉

=
∑
S

pSTr[ρ̂S
∑
x∈S
|ψx〉〈ψx|]

≤
∑
S

pSλmax(
∑
x∈S
|ψx〉〈ψx|).

By the Cotlar-Stein Lemma, we have

λmax(
∑
x∈S
|ψx〉〈ψx|) ≤ 1 + (|S| − 1)δ.

Since we have pg =
∑

S pS and 1 =
∑

S pS |S|,

es ≤
∑
S

pSλmax

(∑
x∈S
|ψx〉〈ψx|

)
≤
∑
S

pS (1 + (|S| − 1)δ)

= pg(1− δ) + δ.
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5 Quantum Hash

5.1 Quantum Fingetprinting is Resilient to Classical Leakage

Now let us consider the setting of quantum hashing. For the sake of simplicity, we assume that the
classical message X is uniformly distributed over {0, 1}n, and all parties are information theoretic
and considered as channels.

Suppose now that a prover A, either adversarial or honest, upon obtaining some side information
Y of X, wants to show that he has full access to the classical message X. To show this, he needs
to pass a test held by a verifier V who has full access to X. One way to do this is to send V an
m-bit hash M , and V will accept or reject based on the classical messages X and M .

If the adversary wants to cheat as best as he can, the optimal strategy would be applying
a deterministic mapping on the side information Y ; similarly, if the verifier wants to distinguish
adversarial parties from honest ones as best as he can, the optimal strategy would also be a
deterministic algorithm. Therefore we can safely assume that both A and V are deterministic
mappings.

Definition 6 (Resilience against leakage). A mapping h : {0, 1}n → {0, 1}m is called σ-resilient
against k bits of information leakage if for all classical side information Y of X such that |Y | ≤ k,
forall mappings f : {0, 1}k → {0, 1}m, we have

Pr
XY

[f(Y ) = h(X)] ≤ σ.

If σ is not specified then it is assumed that σ = negl(n).

Ideally, one would want a hash function which is resilient against much information leakage
and short at the same time. Unfortunately these two requirements cannot be achieved at the same
time. If an m-bit verification scheme V is resilient against k bits of classical leakage, one must have
m = k+ ω(log n). This can be seen as follows: suppose otherwise that m = k+O(log n). Then an
adversarial prover, upon getting the first k bits of the message an honest party would send to the
verifier, guesses the remaining O(log n) bits uniformly at random. Such a prover would then have
an inverse polynomial probability of passing the test.

Now suppose that both the verifier and the prover have access to quantum power, while the
information leakage is still classical. Now the prover can send an m-qubit quantum system ρ to the
verifier, and the verifier would then perform a joint measurement on both X and ρ to determine
whether to accept or not. Denote the state space of X,Y and M respectively by X ,Y and M.

Definition 7 (Resilience of quantum fingerprinting against classical information leakage). An
(n,m, δ) quantum fingerprinting φ is called σ-resilient against k bits of classical information leakage
if for all classical side information Y of X such that |Y | ≤ k and any quantum channel CY→M, we
have

Tr[V · (I ⊗ C)(ρXY )] = σ,

where
ρXY =

∑
x,y

Tr[X = x, Y = y]|x〉〈x| ⊗ |y〉〈y|,

and
V =

∑
x

|x〉〈x| ⊗ φx.

When σ is not specified, it is assumed that σ = negl(n).

13



In the case where all states we are considering are cq states, it is safe to replace a general
channel by mapping each classical information to a state. Therefore, C can be specified by

C(·) =
∑
y

〈y| · |y〉ρy.

Then the passing probability Tr[V · (I⊗C)(ρXY )] can be written more elegantly as EXY [Tr[φXρY ]].
In sharp contrast to the classical case, the Separation Lemma implies that there exists a (n,m, δ)

quantum fingerprinting resilient against k bits of classical information leakage, where k is much
larger than m. In fact we have the following theorem.

Theorem 5.1. For all n, m = ω(log n) and k = n − ω(log n), there exists a quantum (n,m)
cryptographic hash which is resilient against k bits of classical information leakage.

Before proving this theorem, note that this theorem is tight on both sides. If k = n−O(log n),
then an adversary knowing the side information can guess correctly the actual value of X with
probability inverse polynomial, thus the success probability would also be non-negligible; on the
other hand, if m = O(log n), we claim that an adversary with zero side information can still pass
the test with non-negligible probability.

To see this, let’s start from the completeness condition. This is saying that there exist ρx’s
such that EX [Tr[MXρX ]] = 1. This can only happen when each term is 1, which in turn implies
that Tr[Mx] ≥ 1 for all x. Now suppose the adversary has no side information about the classical
message, so the best he can do is to prepare a state ρ. The success probability will then be

EXTr[MXρ] ≤ λmax(EX [MX ]),

which can be approached when ρ0 = |ψ0〉〈ψ0|, |ψ0〉 being the eigenvector corresponding to the
largest eigenvalue of EX [MX ]. The operator norm can be lower bounded from the trace by

λmax(EX [MX ]) ≥ Tr[EX [MX ]

dimM
≥ 1

poly(n)
,

resulting in a non-negligible passing probability without any side information.
Now let us proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. Take an (n,m, δ) quantum fingerprinting φ, where δ will be specified later.
We know that such a finderprinting exists for m = O(log n + 2 log 1

δ ), therefore there exists δ =
negl(n) such that φ is a quantum cryptographic hash. The verification scheme associated to this
quantum fingerprinting is then

V =
∑
x

|x〉〈x| ⊗ φx.

Upon getting k = n − l bits of classical information, the guessing probability of the adversary to
the classical message is upper bounded by 2−l. By Separation Lemma, the probability that the
adversary pass the test es is upper bounded by 2−l+δ, which is still a negligible function of n given
l = ω(log n).

5.2 Generalized Verification Scheme Resilient to Classical Leakage

Our verification scheme is maximally resilient to classical leakage of information. However, it is
still not good enough because the verifier may need to get full access to the whole message. One
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may ask if it is possible that the verifier only use a small amount of information from the message
to perform the verification scheme, yet the verification is still resilient to classical leakage.

To formulate this idea, we generalize the definition of a verification scheme V = (C,M) with
three parameters (n, k,m) played by two players A and B as follows:

1. A joint distribution XY , where the marginal distribution of X ∈ {0, 1}n is uniformly random,
is generated by nature.

2. A gets the k-qubit quantum state ρX = C(|X〉〈X|) and B gets the side-information string Y .

3. B generates an m-qubit quantum state µY and sends it to A.

4. A perform a joint measurement M on the state ρX ⊗ µY . The game is successful if and only
if the measurement accepts. The overall success probability is thus

eVs = EXY [M(ρX ⊗ µY )].

For a given `, define the optimal success probability over all classical leakage Y where H(X|Y ) ≥
` to be eV ∗s (`). We can then define the resilience formally:

Definition 8. A (n, k,m)-verification scheme V = (C,M) is called σ-resilient to ` bits of classical
leakage if we have

eV ∗s (`) ≤ σ.

In the case where σ is not specified, it is assumed that σ is negligible.

Interestingly, one can use the power of quantum side information to reduce the size of the advice
state.

Theorem 5.2. For all n, there exists a (n, k,m)-verification scheme V which is resilient to ` bits
of classical leakage whenever

k = m = ω(log2 n), n− ` = ω(log n).

Proof. Proof by construction. Take t,m′ =
√
k = ω(n). We first fix a (n,m′)-quantum crypto-

graphic hash function φ. for a given message x, the advice state would just be t-fold tensor product
of φx’s, namely

ρx := φ⊗tx .

Upon receiving the hash µY consisting of t parts of m′-qubit states, the verifier performs SWAP
test between all t pairs of φX and each of the qubit states, accepts if all SWAP tests pass and
rejects otherwise. Note that an honest party having full access to X would be able to produce φ⊗tX
perfectly, thus successes with probability 1.

To see that this scheme is resilient against classical leakage, assume now that the state re-
ceived by the verifier is a forgery state µY . Regarding both ρX and µY as t-partite states, we use
ρTX , µ

T
Y , SWAP T to denote the marginal state on subsystems T ⊆ [t] and the swap between the two

subsystems respectively. The measurement corresponding to one copy of SWAP test is I+SWAP
2 ,
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thus the success probability will be

eVs =EXY
[

Tr[(I + SWAP )⊗t(ρX ⊗ µY )]

2t

]
=

1

2t

∑
T∈[t]

EXY

[
Tr[
⊗
i∈T

SWAP i(ρX ⊗ µY )]

]

=
1

2t

∑
T∈[t]

EXY
[
Tr[SWAP T (ρTX ⊗ µTY )]

]
=

1

2t

∑
T∈[t]

EXY [Tr[ρTX · µTY ]].

Here the third line comes by tracing out irrelevant states, and the fourth line comes from the
identity Tr[SWAP (ρ ⊗ σ)] = Tr[ρσ]. For each term Tr[ρTX · µTY ] with nonempty T and any i ∈ T ,
we have

Tr[(ρTX · µTY )] ≤ Tr[(φi ⊗ IT\{i})µTY ] = Tr[φxρ
i
Y ].

This gives us

eVs ≤
1

2t
+ max

i
EXY Tr[ρiY φX ].

By Theorem 5.1, forall Y such that Hmin(X|Y ) ≥ `, i ∈ [t], EXY Tr[ρiY φX ] = negl(n) given that φ is
a quantum cryptographic hash function. eV ∗S (`) = negl(n) then comes from that t = ω(log n).

6 Applications of Separation Lemma in Quantum-proof Extrac-
tors

Let us now recall the setting of seeded extractor. A seeded extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}m takes a weak random source X as well as a much shorter, uniform and independent seed
Y and outputs a nearly uniform distribution. Rigorously we have the following definition.

Definition 9 (Extractor). A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is called an (k, ε)-extractor
if for all random source X such that − log pg(X) ≥ k, we have

‖Um − Ext(X ⊗ Ud)‖ ≤ ε.

When used in the setting of privacy amplification, one would consider the case where there
is a leakage of the random source. The output of the extractor then need to not only be close
to uniform, but also be almost independent of the side information. Depending on whether the
leakage is classical or quantum, we have the following definitions for classical-proof and quanutm-
proof extractors respectively.

Definition 10 (Classical-proof Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called
an (k, ε)-classical-proof extractor if for all random source X with classical side information Y such
that − log pg(X|Y ) ≥ k, we have

‖Um ⊗ Y − Ext(X ⊗ Ud)Y ‖ ≤ ε.
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Definition 11 (Quantum-proof Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called
an (k, ε)-quantum-proof extractor if for every cq state ρXE such that − log pg(X|E) ≥ k, we have

‖Um ⊗ ρE − (Ext⊗ I)(ρXE)‖tr ≤ ε.

Intensive research on all three kinds of extractors has been done over years. Fortunately, the
following theorem says that a good extractor is automatically a good classical-proof extractor, up
to very little parameter loss:

Theorem 6.1 ( [14]). Any (k, ε)-extractor is a (k + log 1/ε, 2ε)-classical-proof extractor.

One long-standing open problem, then, is whether a classical-proof extractor is essentially a
quantum-proof extractor with roughly the same parameter. Currently the best result is that a
(k, ε)-classical proof extractor is a (k + log 2/ε,O(2m/2

√
ε))-extractor. For nonexponential blow-

up of parameters, Gavinsky et al. [11] showed that there exists a (k − Θ(n), ε)-classical extractor
which is not secure against O(log n) qubits of quantum side information. Proving a result without
exponential blowup on the parameter in the practical range, however, is a very challenging problem.

The Separation Lemma here suggests that such a result without a drastic blowing up on the
error parameter may not exist. To see this, we need to define some sets first.

Definition 12. For every k, define the following sets:

• C(k) is the set of all cq states ρXE that can be generated from a classical random source XY
with

− log max
y
pg(X|Y = y) ≥ k

via a channel acting only on the Y part;

• CC(k) is the set of all cq states ρXE that can be generated from a classical random source
XY with

− log pg(X|Y ) ≥ k
via a channel acting only on the Y part;

• CQ(k) is the set of all cq states ρXE such that − log pg(X|E)ρ ≥ k.

Clearly we have C(k) ⊆ CC(k) ⊆ CQ(k). To see the importance of these sets, we can use the
alternative, though equivalent definitions of extractors, classical-proof and quantum-proof extrac-
tors:

Definition 13 (Alternative definition for extractors). A function Ext : {0, 1}n×{0, 1}d → {0, 1}m
is called a (k, ε)-extractor (classical-proof extractor, quantum extractor), if for all cq states ρXE ∈
C(k)(CC(k), CQ(k)) with X ∈ {0, 1}n we have

‖Um ⊗ ρE − (Ext⊗ I)(ρXE)‖tr ≤ ε.

The proof of Theorem 6.1 essentially makes use of the fact that every state ρXE in CC(k +
log 1/ε) is ε-close to the set C(k), and thus a (k, ε)-extractor, when applied to ρ, would introduce at
most 2ε error from the state Um⊗ρE due to monoticity of trace distance. If one could obtain similar
results between CQ(k) and CC(k), then we could easily prove that a classical-proof extractor is
secret quantum-proof.

This turns out to not be the case according to Separation Lemma. Recall our definition of ε-
smooth conversion parameter pε↓(X|E)ρ, which measures the least guessing probability of a classical
distribution we need in order to generate the desired state ρ, i.e.

d(ρ, CC(k)) ≤ ε⇔ − log pε↓(X|E)ρ ≥ k.
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Theorem 6.2. For any k, there exists a cq state ρXE where X ∈ {0, 1}k(1+o(1)) such that ρ ∈ CQ(k)
while d(ρ, CC(2)) ≥ 0.98.

Proof. Fix δ = 0.02 and ε = 0.98. By the Johnson-Lindenstrauss Lemma, we have a cq state

ρXE = 2−n
∑

x∈{0,1}n
|x〉〈x| ⊗ |ψx〉〈ψx| ∈ S=(X ⊗ E)

such that log dim E = O(log n) and maxx 6=x′ |〈ψx|ψx′〉|. For given k, there exists n = k(1 + o(1))
such that n−O(log n) ≥ k. With that n, we have

− log pg(X|E)ρ ≥ k ⇒ ρ ∈ CQ(k)

as well as
− log pε↓(X|E)ρ ≤ 2.

By the Separation Lemma, we have

pε↓(X|E)ρ ≥ 1− δ − ε/2⇒ d(ρ, CC(2)) ≥ 0.98.

The Separation Lemma suggests that an arbitrary classical extractor may not be quantum-
proof, i.e. the sets CQ(k) and CC(k) are spatially separated. Nevertheless, one may still prove
that a classical extractor is quantum-proof, but in order to do that, one might need to use additional
properties of the extractor, other than that it can extract randomness from all states in CC(k).
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A Proof of the Cotlar-Stein Lemma

Lemma A.1 (Cotlar-Stein Lemma). For a set of unit vectors {|ψ1〉, |ψ2〉, · · · , |ψn〉} with maximum
fidelity maxi,j:i 6=j |〈ψi|ψj〉| ≤ δ, we have

λmax

(
n∑
i=1

|ψi〉〈ψi|

)
≤ 1 + (n− 1)δ.

Proof. We use the fact that the operator norm is upper bounded by all Schatten p norms, i.e.

λmax(ρ) = ‖ρ‖∞ = lim
p→∞

(Tr[ρp])1/p .

For an arbitrary positive integer m, let’s now bound

‖
n∑
i=1

|ψi〉〈ψi|‖mm = Tr

[
(
n∑
i=1

|ψi〉〈ψi|)m
]
.

We have

Tr

[
(
n∑
i=1

|ψi〉〈ψi|)m
]

=
∑

i1,··· ,im∈[n]

Tr

 m∏
j=1

|ψij 〉〈ψij |


=

∑
i1,··· ,im∈[n]

m−1∏
j=1

〈ψij |ψij+1〉 · 〈ψim |ψi1〉

≤
∑

i1,··· ,im∈[n]

m−1∏
j=1

|〈ψij |ψij+1〉| · |〈ψim |ψi1〉|.

Using the fact that both |ψim〉 and |ψi1〉 are unit vectors, we have |〈ψim |ψ1〉| ≤ 1. Then

Tr

[
(

n∑
i=1

|ψi〉〈ψi|)m
]
≤

∑
i1,··· ,im∈[n]

m−1∏
j=1

|〈ψij |ψij+1〉|

≤
∑

i1,··· ,im−1∈[n]

m−2∏
j=1

|〈ψij |ψij+1〉| ·
∑
im

|〈ψim−1 |ψim〉|

Note that for every im−1, the term
∑

im
|〈ψim−1 |ψim〉| can be upper bounded by 1 + (n − 1)δ.
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Repeatedly applying this argument, we have

Tr[(
n∑
i=1

|ψi〉〈ψi|)m] ≤
∑

i1,··· ,im−1∈[n]

m−2∏
j=1

|〈ψij |ψij+1〉| · (1 + (n− 1)δ)

≤
∑

i1,··· ,im−2∈[n]

m−3∏
j=1

|〈ψij |ψij+1〉| · (1 + (n− 1)δ)2

≤ · · ·

≤
∑
i1

(1 + (n− 1)δ)m−1

= n · (1 + (n− 1)δ)m−1.

Therefore, for every m we have

λmax(
n∑
i=1

|ψi〉〈ψi|) ≤ (1 + (n− 1)δ)1− 1
m · n1/m.

The result follows by letting m→∞.
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