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Abstract

In this work, we introduce a definition of the Discrete Fourier Transform (DFT) on Euclidean
lattices in Rn, that generalizes the n-th fold DFT of the integer lattice Zn to arbitrary lattices. This
definition is not applicable for every lattice, but can be defined on lattices known as Systematic
Normal Form (SysNF) introduced in [ES16]. Systematic Normal Form lattices are sets of inte-
ger vectors that satisfy a single homogeneous modular equation, which itself satisfies a certain
number-theoretic property. Such lattices form a dense set in the space of n-dimensional lattices,
and can be used to approximate efficiently any lattice. This implies that for every lattice L a DFT
can be computed efficiently on a lattice near L.

Our proof of the statement above uses arguments from quantum computing, and as an appli-
cation of our definition we show a quantum algorithm for sampling from discrete distributions
on lattices, that extends our ability to sample efficiently from the discrete Gaussian distribution
[GPV08] to any distribution that is sufficiently ”smooth”. We conjecture that studying the eigen-
vectors of the newly-defined lattice DFT may provide new insights into the structure of lattices,
especially regarding hard computational problems, like the shortest vector problem.

1 Introduction

The Fourier Transform is ubiquitous in the study of lattices in mathematics, and in recent years has
led to breakthroughs in our understanding of the complexity of lattice problems [AR05, Reg09].
The Fourier Transform on Euclidean lattices is usually associated with the Fourier series of lattice-
periodic functions: Let L ⊆ Rn denote some full-rank n-dimensional lattice, L = SpanZ(B), where
B ∈ GL(n, R). Consider the set of bounded complex-valued continuous functions f : Rn → C

that are periodic in L, i.e.
∀x ∈ Rn, z ∈ L, f (x) = f (x + z).

Then the Fourier series of f , f̂ : L∗ 7→ C, supported on the dual lattice L∗ is defined as follows:

∀z ∈ L∗, f̂ (z) :=
1

det(B)
·
∫
P(L)

f (x)e−2πi〈x,z〉dx,

where P(L) is the basic parallelotope of the lattice defined by the image of [0, 1)n under B. Hence,
in this respect, the FT on n-dimensional lattices is defined as the n-dimensional generalization of
the Fourier Series of functions defined on the unit interval.

∗Center for Theoretical physics, MIT
†Department of Mathematics and Center for Theoretical physics, MIT

1



The Discrete Fourier Transform (DFT) of a sequence of N complex numbers X0, . . . , XN−1 is
defined as

∀k ∈ ZN x̂k =
N−1

∑
z=0

Xze−2πix·z/N .

It is a map between discrete sequences that can be thought of as a discretization of the Fourier
Transform to regularly spaced-grids in the following sense: the Fourier-Transform of a function f
that is periodic on the interval [0, N] ⊆ R, sampled at integer points [0, . . . , N− 1], corresponds to
the DFT of the sequence derived by sampling f at the points [0, . . . , N − 1]. The DFT has proven
to be extremely useful in both engineering and computer science.

Given the interpretation of the DFT as a regularly-spaced sampling of the continuous FT it
is then natural to consider whether one can define the DFT on an arbitrary lattice. Specifically,
it would be desirable to have a definition of the DFT which inherits the inner-product between
lattice vectors. Such is the case for the trivial lattice Zn: for any integer N one can consider the
ring of integers modulo N, ZN and define for any function f : Zn

N → C:

∀x ∈ Zn
N f̂ (x) = ∑

z∈Zn
N

f (z)e−2πi〈x,z〉/N .

In this case, the DFT at each point corresponds to sampling the continuous FT of f at the points of
L = Zn. Furthermore, this definition corresponds to the Fourier Transform of the finite group Zn

N
with entry-wise addition modulo N.

We would like to have this behavior for any arbitrary lattice L ⊆ Rn. But to relate to finite
groups we need to relate to a finite subset of L. Let N = det(L). Then L is periodic in N in each
direction, i.e. for any v ∈ L we have v+ Nei ∈ L for all i ∈ [n]. Therefore, it is sufficient to consider
the finite lattice LN as an additive subgroup of the finite vector space Zn

N with addition modulo N,
instead of L as an additive subgroup of Rn with real addition. We define lattice DFT as follows:

Definition 1. Lattice DFT
Let L ⊆ Rn be an n-dimensional integer lattice, N = det(L). A Discrete Fourier Transform of L
(DFT) is a Fourier Transform of the finite group LN , for which the characters χx(z) for x, z ∈ LN
satisfy:

∀x, z ∈ LN χx(z) = e−2πi〈x,z〉/N .

and so the main question is

Question 1. Does there exist a lattice DFT for every lattice?

A natural place to look for a DFT is in the context of finite Abelian groups. Given a lattice L
with determinant N = det(L), one can restrict his attention to the set of lattice points with entries
in ZN , and consider this as a finite sub-group LN of the cube Zn

N with entry-wise addition modulo
N. Since LN is a finite Abelian group then by the fundamental theorem of classification of finite
Abelian groups LN is isomorphic to a product of primary cyclic groups. Hence, one can define
the DFT of LN by considering the DFT of the individual prime-power factors Zk

p for prime p and
integer k. Yet, one can check that generically, the resulting DFT would have an inner-product
which is very different from the integer inner-product modulo N between lattice points.

In this work we answer the question above by showing that one can define the DFT for a certain
dense set of lattices. Furthermore, we show that this DFT can be computed efficiently, albeit with
a quantum computer. This dense set of lattices corresponds to lattices of a special form called
Systematic Normal Form (or SysNF for short) introduced by Eldar and Shor in [ES16]:

Definition 2. Systematic Normal Form (SysNF) [ES16]
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An integer matrix B is said to be SysNF if Bi,i = 1 for all i > 1, Bi,j = 0 for all i > 1, i 6= j, and B1,1 = N
satisfies

∑
i>1

B2
1,i + 1 6= 0(mod N). (1)

Specifying only the non-zero entries of B - it can be written as:

B =


N b2 b3 . . . bn

1
1

. . .
1

 (2)

These lattices form a dense set in the space of lattices in terms of the Euclidean distance, in the
sense that for every ε > 0 and arbitrary lattice L, there exists an efficiently computable linear map
σ, a large integer T, and a SySNF lattice L′ such that for every x ∈ L σ(x) ∈ L′ and ‖x− σ(x)/T‖ ≤
ε‖x‖.

By its definition, a SysNF lattice is the set of integer vectors that satisfy a certain homoge-
neous modular equation (modulo a number N) where, in addition, this equation satisfies an extra
number-theoretic condition. Defining lattices as the set of solutions of modular equations is a def-
facto standard in the study of lattices (see e.g. [Pei15]), especially in the context of random lattices
due to Ajtai [Ajt96]. However, the extra number-theoretic condition in Equation 1 wasn’t defined
prior to [ES16] and, in fact, is used crucially to establish that such lattices have a DFT. We discuss
this further in sub-section 1.1.

Our proof that DFT can be defined on SysNF lattices is quantum. Concretely, we provide a
quantum circuit implementing the character map for each lattice point. To do this, we first define
a quantum analog of the map above:

Definition. Quantum Fourier Transform on SysNF lattices
Let L ⊆ Rn be a SysNF lattice, N = det(L). The Quantum Fourier Transform on LN is defined for
basis states as follows:

∀x ∈ LN ,FL,N(|x〉) =
1√

Nn−1 ∑
z∈LN

e−2πi〈x,z〉/N |z〉. (3)

The normalization by
√

Nn−1 follows from the fact that there are precisely Nn−1 points in LN . We
then show that this map is unitary (and in particular, efficiently computable) thereby establishing
that the |LN | characters χx(z) = e−2πi〈x,z〉/N for x ∈ LN are orthogonal, and hence form a complete
set of inequivalent irreducible representations of LN - i.e. a Fourier Transform of the group LN .

Theorem 1. A Quantum Circuit for lattice DFT
Given is a lattice L = L(B), where B is an n× n SysNF matrix. There exists a quantum circuit Q of size
poly(n), that implements FL,N . In particular, L can be assigned a lattice DFT.

As an application of our new definition, the above circuit gives rise to an efficient way to
sample from any discrete distribution on a lattice, for sufficiently ”nice” functions:

Theorem 2. (sketch) Let f be a complex-valued function on Rn, and L ⊆ Rn some lattice, generated by
matrix B. Suppose that F , the FT of f , can be generated as a superposition on Zn

∑
x∈Zn

f (x)|x〉
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and F is approximately bounded in λ1(L∗)/2n/2 then one can approximately sample from the following
discrete distribution efficiently quantumly:

∀x ∈ L P(x) ∝ | f (x)|2.

1.1 Discussion and Previous Work

To the best of our knowledge, a Discrete Fourier Transform that inherits the Euclidean inner-
product and generalizes the DFT of the integer lattice Zn to arbitrary n-dimensional lattices has
not been defined before. The standard notion of the Fourier Transform on arbitrary n-dimensional
lattices relates to the Fourier Series of lattice-periodic functions, and thus behaves quite differently
- and in particular, is not a map from the lattice onto itself. Our definition of DFT for lattices cannot
be defined for general lattices. Luckily, however, SysNF lattices form an efficiently computable
dense group in the space of lattices, hence for every lattice, there exists a ”nearby” efficiently-
computable lattice for which the DFT can be defined.

The Discrete Fourier Transform we define can be viewed as a Fourier Transform of the discrete
group LN ⊆ Zn

N with entry-wise addition modulo N, where the set of irreducible representations
used are the 1-dimensional characters of the cyclic group of order N. We note that given any
lattice L with det(L) = N one can define a Fourier Transform on the finite group LN using the
Fundamental Theorem of Finite Abelian Groups, but in general this does not give rise to the DFT
with the inner-product between lattice points as in our definition. Hence, our claim is not that
perturbing a lattice to SysNF is necessary to define a finite-group FT, but rather that perturbing it
is sufficient to define a DFT - a FT that inherits the inner-product over integer vectors modulo N.
As an added bonus, the DFT on SysNF lattices can be computed on a quantum computer in time
which is polynomial in the dimension of the lattice.

Perturbing lattices to nearby lattices with special structure is not new and has been investigated
by Paz and Schnorr in [PS87]. In that reduction, one perturbs a given lattice L to a nearby lattice L′

in which the quotient Zn/L is cyclic. The authors then characterize a lattice L as the set of vectors
satisfying a homogeneous modular equation if and only if the quotient Zn/L is cyclic. Hence
the Paz-Schnorr reduction reduces any lattice to the set of solutions of a homogeneous equation
modulo some large integer N. However, the structure of the reduction generates lattices in which
N does not generally satisfy our extra co-primality condition. Hence the lattices produced by the
Paz-Schnorr reduction cannot be assigned a lattice DFT as in our case.

In terms of the quantum implementation of the Fourier Transform, we note that effectively, it
is a reduction from the definition of the DFT on LN to the standard DFT on Zn−1. That said, it
is only because of the extra number-theoretic condition, namely that ∑i>1 B2

1,i 6= (−1)(mod N)

that such a reduction is possible. The quantum implementation of the DFT on the ring of integers
modulo N is well-known by now [NC11], and has been studied for other groups as well [Bea97].

In terms of the sampling algorithm our result generalizes, in the quantum setting, the result of
Gentry et al. [GPV08] to arbitrary distributions with ”nice” FT’s. In that result the authors showed
how to sample from the discrete Gaussian distribution with a variance comparable to the length
of the lattice basis ‖B‖, and here we provide a quantum routine that can perform this task for
essentially any distribution that can be ”sampled quantumly”. We note that one can also distill a
quantum sampling routine from the work of Regev [Reg09], but the SysNF structure makes our
scheme advantageous compared to that scheme: we can sample quantumly from functions which
are not known to be accessible via the work of [Reg09].

Finally, the question of sampling from general distributions on lattices has been also investi-
gated by Lyubashevsky and Wichs [LW15] in the context of cryptographic efficiency. There, the
authors show how to sample classically from arbitrary distributions on lattices defined by a sys-
tem of modular equations, but they also require the knowledge of a secret trapdoor in addition to
the lattice basis, in order to do that.

4



1.2 Open Questions

We believe there are several important open questions that arise from our new definition, and its
quantum implementation, that pertain to the problem of solving hard lattice problems. One such
question is trying to characterize the eigenvectors of the lattice DFT unitary:

Question 2. Let L ⊆ Rn be some SysNF lattice, and FL,N denote its corresponding DFT. Find the eigen-
vectors of FL,N .

The interest in the above question stems from the fact that using quantum phase estimation
w.r.t. FL,N and, say a randomly chosen quantum state, it may be possible to find such eigenvectors
efficiently. On the other hand, it is known that the eigenvectors of the standard n-dim. DFT are
Gaussian, up to multiplying by a Hermite polynomial. Hence it is possible that the eigenvectors
of FL,N are discrete Gaussian superpositions on LN . Could it be that one of these eigenvectors is a
Gaussian that is computationally ”interesting”? say with variance s = poly(n)?
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