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Learning with Errors is one of the fundamental problems in computational learning theory and has,
in the last years, become the cornerstone of post-quantum cryptography [Reg05, GPV08]. In LWE,
given a secret s, one is provided samples of the form

(a, a · s + e (mod q)) ,

where a ∈ Fn
q is picked uniformly at random and e ∈ Fq is an ’error’ term drawn from some distribution

χ. The goal is to output s, while minimizing the number of samples used and the computation time.
In this work we study quantum algorithms for solving LWE with quantum samples. Let us be more

explicit on the definition of a quantum sample for the LWE problem. We assume that the quantum
learning algorithm receives samples in the form

1√
qn ∑

a∈Fn
q

|a〉 |a · s + ea(mod q)〉 ,

where ea are iid random variables from some distribution χ over Fq.
As expected, the performance of the learning algorithm, both in the classical and quantum case, is

sensitive to the noise model adopted, i.e. to the distribution χ. When LWE is used in cryptographic
schemes, the distribution χ has support on a small interval around 0, either uniform or a discrete gaus-
sian [BV14]. We prove that for such distributions, there exists an efficient quantum learner for LWE.

Main Result(informal) For error distributions χ used in cryptographic schemes, and for any ε > 0,
there exists a quantum learning algorithm that solves LWE with probability 1 − η using O(n log 1

η )

samples and running time poly(n, log 1
η ).

Our quantum learner is a simple generalisation of Bernstein-Vazirani algorithm [BV97]: we start
with a quantum sample, apply a Quantum Fourier Transform over Fq on each of the qudit registers, and
then, we measure in the computational basis. Our analysis shows that, when the last qudit is not 0, which
happens with high probability, the value of the remaining registers gives s with constant probability. We
can then repeat this process so that our algorithm outputs s with high probability.

While our quantum learning algorithm does not break the proposed LWE-based encryption schemes,
it does have some interesting implications for cryptography: first, one needs to be careful about the
access to the public-key generation algorithm that is given to the adversary; second, our algorithm
shows a possible way for attacking LWE-based encryption by using classical samples to approximate
the quantum sample state, since then using our quantum learning algorithm would solve LWE.
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