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Abstract. We investigate the post-quantum security of hash functions based on the sponge
construction. A crucial property for hash functions in the post-quantum setting is the
collapsing property (a strengthening of collision-resistance). We show that the sponge
construction is collapsing (and in consequence quantum collision-resistant) under suitable
assumptions about the underlying block function. In particular, if the block function is
a random function or a (non-invertible) random permutation, the sponge construction is
collapsing.

A full version of this paper can be found here: http://www.ut.ee/~unruh/sponge.pdf.

Hashes functions and the sponge construction. Cryptographic hash functions are one of
the central primitives in cryptography. They are virtually used everywhere: As cryptographically
secure checksums to verify integrity of software or data packages, as building block in security
protocols, including TLS, SSH, IPSEC, as part of any efficient variable-input-length signature
scheme, to build full-fledged hash-based signature schemes, in transformations for CCA-secure
encryption, and many more.

While all widely deployed public-key cryptography is threatened by the rise of quantum
computers, hash functions are widely believed to only be mildly effected. The reason for this
is twofold. On the one hand, generic quantum attacks achieve at most a square-root speed up
compared to their pre-quantum counterparts and can be proven asymptotically optimal [7, 16,
11]. On the other hand, there do not exist any dedicated quantum attacks on any specific hash
function (excluding of course those based on number theory like, e.g., VSH [8]) that perform
better than the generic quantum attacks.

One of the most important properties of a hash function H is collision-resistance. That is,
it is infeasible to find x 6= x′ with H(x) = H(x′). Intuitively, collision-resistance guarantees
some kind of computational injectivity – given H(x), the value x is effectively determined. Of
course, information-theoretically, x is not determined, but in many situations, we can treat the
preimage x as unique, because we will never see another value with the same hash. For example,
collision-resistant hashes can be used to extend the message space of signature schemes (by
signing the hash of the message), or to create a commitment schemes (e.g., sending H(x‖r) for
random r commits us to x; the sender cannot change his mind about x because he cannot find
another preimage).

In the post-quantum setting, however, it was shown by Unruh [14] that collision-resistance is
weaker than expected: For example, the commitment scheme sketched in the previous paragraph
is not binding: it is possible for an attacker to send a hash h, then to be given a value x, and
then to send a random value r such that h = H(x‖r), thus opening the commitment to any
desired value – even if H is collision-resistant against quantum adversaries. This contradicts the
intuitive requirement that H(x) determines x.
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Fortunately, Unruh [14] also presented an strengthened security definition for post-quantum
secure hash functions: collapsing hash functions. Roughly speaking, a hash function is collapsing
if, given a superposition of values m, measuring H(m) has the same effect as measuring m (at least
from the point of view of a computationally limited observer). Collapsing hash functions serve as
a drop-in replacement for collision-resistant ones in the post-quantum setting: Unruh showed
that several natural classical commitment schemes (namely the scheme sketched above, and the
statistically-hiding schemes from [10]) become post-quantum secure when using a collapsing hash
function instead of a collision-resistant one. (And the collapsing property also directly implies
collision-resistance.)

In light of these results, it is desirable to find hash functions that are collapsing. Unruh [14]
showed that the random oracle is collapsing. (That is, a hash function H(x) := O(x) is collapsing
when O is a random oracle.) However, this has little relevance for real-world hash functions: A
practical hash function is typically constructed by iteratively applying some elementary building
block (e.g., a “compression function”) in order to hash large messages. So even if we are willing to
model the elementary building block as a random oracle, the overall hash function construction
should arguably not be modeled as a random oracle.1

For hash functions based on the Merkle-Damgård (MD) construction (such as SHA2 [12]),
Unruh [15] showed: If the compression function is collapsing, so is the hash function resulting from
the MD construction. In particular, if we model the compression function as a random oracle (as
is commonly done in the analysis of practical hash functions), we have that hash functions based
on the MD construction are collapsing (and thus suitable for use in a post-quantum setting).

However, not all hash functions are constructed using MD. Another popular construction
is the sponge construction [3], underlying for example the current international hash function
standard SHA3 [13], but also other hash functions such as Quark [1], Photon [9], Spongent [5],
and Gluon [2]. The sponge construction builds a hash function H from a block function2 f . In the
classical setting, we know that the sponge construction is collision-resistant if the block function
f is modeled as a random oracle, or a random permutation, or an invertible random permutation
[4].3 However, their proof does not carry over to the post-quantum setting: their proof relies on
the fact that queries performed by the adversary to the block function are classical (i.e., not in
superposition between different values). As first argued in [6], random oracles and related objects
should be modeled as functions that can be queried in superposition of different inputs. (Namely,
with a real hash function, an adversary can use a quantum circuit implementing SHA3 and can
thereby query the function in superposition. The adversary could evaluate the sponge on the
uniform superposition over all messages of a certain length, possibly helping him to, e.g., find a
collision.) Thus, we do not know whether the sponge construction (and thus hash functions like
SHA3) is collapsing (or at least collision-resistant).

Our contributions. In the present paper we tackle the question whether the sponge construc-
tion is collision-resistant and collapsing. We show:
• If the block function f is collision-resistant when restricted to the left and right half of its

output and it is hard to find a zero-preimage of f (restricted to the right half of its output),
then the sponge construction is collision resistant.
• If the block function f is collapsing when restricted to the left and right half of its output,

respectively, and if it is hard to find a zero-preimage of f (restricted to the right half of its
output), then the sponge construction is collapsing.

1For example, hash functions using the Merkle-Damgård construction are not well modeled as a random oracle.
If we use MAC (k,m) := H(k‖m) as a message authentication code (MAC) with key k, we have that MAC is
secure (unforgeable) when H is a random oracle, but easily broken when H is a hash function built using the
Merkle-Damgård construction.

2It is not called a compression function, since the domain and range of f are identical.
3[4] shows that the sponge construction is indifferentiable from a random oracle in the classical setting. Together

with the fact that the random oracle is collision-resistant, collision-resistance of the sponge construction follows.
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• If the block function f is a random oracle or a random permutation, then the sponge
construction is collapsing.
• For a random block function f , we give a quantum attack for actually finding collision in
the sponge construction where the number of quantum queries to f matches the above
bounds (in the case that the output length of the sponge is one block).

It should be stressed that we do not show that the sponge construction is collapsing (or even
collision-resistant) if the block function f is an efficiently invertible random permutation. In this
case, it is trivial to find zero-preimages by applying the inverse permutation to 0. This means
that the present result cannot be directly used to show the security of, say, SHA3, because SHA3
uses an efficiently invertible permutation as block function. Our results apply to hash functions
where the block function is not (efficiently) invertible, e.g., Gluon [2]. But we believe that our
results are also a first step towards understanding the sponge construction for invertible block
functions, and towards showing the post-quantum security of SHA3.
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