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Abstract—In this paper, we initiate the study of compu-
tational notions of min-entropy in the quantum setting. We
extend the classical Leakage Chain Rule for pseudoentropy
to the case where the leakage information is quantum.
Then we demonstrate an application to quantum leakage-
resilient stream ciphers in the bounded-quantum-storage
model, assuming the existence of a quantum-secure pseu-
dorandom generator.

I. INTRODUCTION

Computational notions of entropy measure how much
(min-)entropy a source X has from the eyes of a compu-
tationally bounded party who may hold certain “leakage
information” B that is correlated with X . They have
several applications in cryptography, such as leakage-
resilient cryptography [1], memory delegation [2], de-
terministic encryption [3], zero-knowledge [4], pseudo-
random generators [5] and other cryptographic primi-
tives [6], and also have close connections to important
results in complexity theory, such as Impagliazzo’s hard-
core lemma [7], and in additive number theory, such as
the Dense Model Theorem [8], [9], [10].

In this work, we initiate the study of computational
entropy in the quantum setting, where X and/or B
may be quantum states and the computationally bounded
observer is modeled as a small quantum circuit. Specifi-
cally, we investigate to what extent the classical notions

1Supported by NSF grant CCF-1420938 and work done
in part while visiting the Institute of Information Science,
Academia Sinica, Taiwan.

2Partially supported by 2016 Academia Sinica Career De-
velopment Award under Grant no. 23-17 and the Ministry of
Science and Technology, Taiwan under Grant no. MOST 103-
2221-E-001-022-MY3. This work was done in part while KMC
was visiting the Simons Institute for the Theory of Computing,
supported in part by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF
grant CNS-1523467. This work was supported in part by the
IARPA QCS program; by HRL subcontract No. 1144-400707-
DS; and by NSF Grant No. CCF-1421078.

4Work done in part while visiting the Shing-Tung Yau
Center and the Department of Applied Mathematics at National
Chiao-Tung University, Taiwan. Supported by NSF grant CCF-
1420938 and a Simons Investigator Award.

of computational entropy generalize to the quantum
setting, and whether quantum analogues of classical the-
orems still hold. We find that some classical phenomena
have (nontrivial) extensions to the quantum setting, but
for others, the quantum setting behaves quite differently
and we can even prove that the natural analogues of
classical theorems are false. As an application of some
of our results, we construct a quantum leakage-resilient
stream-cipher in the bounded-quantum-storage model,
assuming the existence of a quantum-secure pseudoran-
dom generator. To the best of our knowledge, this is
the first result on quantum leakage in the computational
setting.

We expect that computational notions of quantum
entropy will find other natural applications in quantum
cryptography. Moreover, by blending quantum informa-
tion theory and quantum complexity theory, our study
may provide new insights and perspectives in both of
these areas.

In the following sections, we highlight our primary
results without proofs. For more details, including some
negative results, please refer to [11].

II. PSEUDORANDOMNESS OF QUANTUM STATES

We start by investigating the pseudorandomness of
quantum states. Brandao et al. [12] and Gross et al.
[13] showed that there exist pure states that are pseudo-
random, and indeed this holds for a pure state chosen
uniformly at random from the unit sphere with high
probability. Brandao et al. [14], [15] also showed the
existence of (fixed) polynomial-size quantum circuits that
generate pseudorandom pure states. We provide a simpler
sampling method to show the existence of pseudorandom
pure states.

Theorem 1. For all s ∈ N and ε > 0, there exists
m = O(log(s/ε)) such that, if we uniformly sample
(α1, . . . α2m) from {−2−m/2,−2−m/2}2m

and let ρ =∑2m

i=1 αi |i〉, then with all but 2−Ω(2m) probability, ρ is
a pure state that is ε-pseudorandom against quantum
circuit of size s.

In [12], the pseudorandomness of random pure states
was viewed as a negative result, showing that random



pure states are not useful for efficient quantum computa-
tion, since they can be replaced by uniform classical bits.
However, from the perspective of pseudorandomness and
computational entropy, it is a positive result, asserting the
existence of a pseudorandom state that has zero entropy.

III. COMPUTATIONAL QUANTUM MIN-ENTROPY

We next investigate computational notions of min-
entropy in the quantum setting.

a) (Conditional) pseudoentropy: There are several
ways to define computational min-entropy with different
applications and interesting connections to other fields.
Here, we focus on pseudoentropy definitions in the HILL
style [5], which are the most widely used notions in
the classical setting. For definitions and connections
to other computational notions, please refer to the full
version [11].

Let ρXB ∈ X ⊗ B be a bipartite cq-state with n + `
qubits. We say that X conditioned on B has conditional
quantum rHILL pseudo(min-)entropy at least k (infor-
mally written as H rHILL(X|B)ρ ≥ k) if there exists a
quantum state σXB such that (i) Hmin(X|B)σ ≥ k and
(ii) ρXB and σXB are computationally indistinguishable
by all poly(κ)-size quantum distinguishers, where again
κ is the security parameter1.

b) Information-theoretic Quantum Leakage Chain
Rule: The Information-theoretic Quantum Leakage
Chain Rule is necessary toward the Leakage Chain Rules
for computational quantum min-entropies. Most classical
entropy notions, such as min- and Shannon entropies
satisfy a Leakage Chain Rule stating that H(X|B) ≥
H(X)−|B|, i.e., conditioned on a leakage B, the entropy
of X can only be decreased by the length of B. It is often
useful to generalize these to the case there there is prior
side information Z: H(X|Z,B) ≥ H(X|Z)− |B|. The
following theorems are the special cases of the results
by Winkler et al. .

Theorem 2 ([17, Lemma 13]). Let ρ = ρXZB be a state
on the space X ⊗Z⊗B. Suppose B is an `-qubit system,
assume dim(B) ≤ dim(X ⊗ Z). Then

Hmin(X|ZB)ρ ≥ Hmin(X|Z)ρ − 2`. (III.1)

Moreover, when ρ = ρXZB is a separable state on the
space (X ⊗Z)⊗B, namely, ρXZB =

∑
k pkρ

k
XZ ⊗ ρkB ,

then

Hmin(X|ZB)ρ ≥ Hmin(X|Z)ρ − `. (III.2)

1“rHILL” stands for “relaxed HILL” and refers to the fact that we do
not require their partial trace agreed, i.e., TrX (σXB) = TrX (ρXB).
Under standard cryptographic assumptions, the analogous statement
for (standard) HILL pseudoentropy is false [16].

Remark 3. There are several chain rules for various
quantum entropy notions in the literature [18], [19],
[20], [21], [22], but they consider the relation be-
tween Hmin(X|ZB) and Hmin(XB|Z), which is com-
monly studied in quantum information theory. Motivated
by cryptographic applications, the difference between
Hmin(X|ZB) and Hmin(X|Z) captures how much en-
tropy can (X|Z) loss given an additional leakage B.
We discovered an interesting application of the quantum
Leakage Chain Rule – it provides a much simpler lower
bound proof of superdense coding [23]. We refer to [11]
for more detail.

c) Leakage Chain Rule for quantum HILL pseu-
doentropy: The classical Leakage Chain Rule for rHILL
pseudoentropy, first proved by [1], [10] and improved
by [24], [25], states that for a joint distribution (X,Z,B)
where B consists of ` = O(log κ) bits,

H rHILL(X|Z) ≥ k ⇒ H rHILL(X|Z,B) ≥ k − `.

The leakage chain rule is an important property for pseu-
doentropy and has a number of applications in cryptogra-
phy, such as leakage-resilient cryptography [1], memory
delegation [2], and deterministic encryption [26].

In this work, we prove that this Leakage Chain Rule
can be generalized to handle quantum leakage B when
both the source X and the prior leakage Z remain
classical.

Theorem 4 (Quantum Pseudoentropy Leakage Chain
Rule; informal). Let ρXZB be a ccq-state, where X
and Z are classical and B consists of ` qubits, for
` = O(log κ), where κ is the security parameter. Then

H rHILL(X|Z)ρ ≥ k ⇒ H rHILL(X|Z,B)ρ ≥ k − `.

Note that since X,Z are classical, ρZXB is separable
on the space (X ⊗ Z) ⊗ B; this is why the entropy
has a lost of at most ` bits of entropy, rather than 2`
(c.f., Theorem 2).

Theorem 4 is proved by a quantum generalization
of the Leakage Simulation Lemma [27], [28], [4] to
its quantum analogue (which implies Theorem 4 imme-
diately). In fact, there are two classical proofs of the
Leakage Simulation Lemma: one based on the Min-Max
Theorem and one based on Boosting. We show how to
generalize both techniques to the quantum setting in the
full version, which may be of independent interest. Our
proofs also rely on efficient algorithms for quantum tasks
such as POVM tomography and quantum circuit synthesis
to construct efficient reductions. This leads to a variant
of POVM tomography problem that merits further study.

An interesting open question is to prove the leakage
chain rule when the source X and/or the prior leakage



Z are quantum. In particular, handling a prior quantum
leakage seems important for applications to leakage-
resilient cryptography with quantum leakage, which is
discussed in the next section.

IV. APPLICATION TO QUANTUM

LEAKAGE-RESILIENT STREAM-CIPHERS

In this section, we demonstrate an application of
computational quantum entropy to leakage-resilient cryp-
tography, where we seek to construct cryptographic pro-
tocols that maintain secure even if the side information
about the honest parties’ secrets leak to an adversary.
Specifically, we construct a leakage-resilient stream-
cipher that is secure against quantum leakage. To the
best of our knowledge, this is the first result on quantum
leakage in the computational setting.

Classical leakage-resilient stream-ciphers were in-
vestigated in the seminal work of Dziembowski and
Pietrzak [1], where they considered the security of
a stream-cipher SC in the only computation leaks
model [29] with continual leakage. Specifically, let Si
denote the secret state of SC. At each round i when
the stream cipher evaluates (Si+1, Xi+1) = SC(Si), an
adversary can adaptively chooses any leakage function
fi and learns the output of fi applied to the part of
Si involved in the computation of SC(Si). Under the
assumption that the leakage functions are efficient and
of bounded output length ` = O(log κ)2, they proved
that the output of the i-th round remains pseudorandom
given the output and leakage of the first i − 1 rounds.
While the length of each leakage is bounded, in total
the adversary can collect long leakage accumulated over
many rounds.

Now we consider the case when the leakage is
quantum (where the stream-cipher remains classical).
Namely, the output of the leakage functions become
a bounded-length quantum state. We show that the
construction of Dziembowski and Pietrzak [1] remains
secure against quantum leakage in the bounded-quantum-
storage model [30], [31], [32], [33], where the adversary
has limited quantum memory (but no restriction on its
classical memory). This model was previously investi-
gated in the literature as a way to bypass impossibility
results [30], [32], [33] or to prove security [31].

Theorem 5 (Quantum Leakage-Resilient Stream-Cipher;
informal). Assuming the existence of quantum-secure

2Note that both assumptions are necessary. Without the efficiency
assumption, the leakage function can invert the secret state and leak
on the initial secret S0 bit by bit. Without the length bound, the
adversary can learn the entire new secret state.

pseudorandom generators, there exists quantum leakage-
resilient stream-cipher secure against bounded quantum
storage adversaries with O(log κ) quantum memory and
poly(κ) circuit size, where κ is the security parameter.

We note that both bounds on the leakage and quantum
storage are logarithmic in the security of the underlying
primitives. If the PRG has exponential security, then the
leakage and adversary’s quantum storage can be linear
in the size of the secret state.

The reason that we need the assumption of bounded
quantum storage is that, over many rounds, the adversary
accumulates auxiliary quantum information and we do
not know how to extend our Pseudoentropy Leakage
Chain Rule (Theorem 4) to the case that there is quantum
prior knowledge. When the prior knowledge is classical,
the Leakage Chain Rule holds. Then we can use alter-
nating extraction to circumvent this obstacle as in [1].

ACKNOWLEDGMENTS

KMC is grateful to Krzysztof Pietrzak for an inspiring
discussion that led to this research. CYL acknowledges
useful discussions with Todd A. Brun and Nengkun Yu.

REFERENCES

[1] S. Dziembowski and K. Pietrzak, “Leakage-resilient cryptogra-
phy,” in 49th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA, pp. 293–302, 2008.

[2] K. Chung, Y. T. Kalai, F. Liu, and R. Raz, “Memory delega-
tion,” in Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2011. Proceedings, pp. 151–168, 2011.

[3] B. Fuller, A. O’Neill, and L. Reyzin, A Unified Approach to De-
terministic Encryption: New Constructions and a Connection
to Computational Entropy, pp. 582–599. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

[4] K. Chung, E. Lui, and R. Pass, “From weak to strong zero-
knowledge and applications,” in Theory of Cryptography -
12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part I, pp. 66–92,
2015.
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