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Abstract: We propose a light source monitoring scheme in practical quantum key distribution systems based on
photon number resolving method with a single photon detector working at room temperature. We analyze in what
situations can this scheme work regardless of the high dark count rate of the SPD. Furthermore, discussions are
made on the influences on QKD systems caused by the fluctuations of dark count rate and detection efficiency of the
monitoring detector. Measuring of these parameter fluctuations is also done on real room-temperature detectors.

1. Introduction

Quantum key distribution (QKD) is a theoretically secure method to distribute secret keys between the information
transmitter and receiver. However, in real QKD systems, the loopholes in optical components may cause practical
security problems. Among them the loopholes in laser sources, especially in the widely-used weak coherent sources,
are negligible. Therefore, light source monitoring (LSM) is necessary for practical security of QKD systems.

Photon number resolving (PNR) scheme, especially the passive PNR scheme [1], is a practical monitoring scheme
with high performance, which requires a single photon detector (SPD). Normally, an InGaAs avalanche photon diode
(APD) detector is used for monitoring. Its working temperature is lower than −30◦C to suppress the dark count rate
(DCR), thus demands an additional cooling module. We propose a PNR monitoring scheme with a detector working
at room temperature to simplify the structure of monitor.

2. PNR monitoring with SPD in room temperature

In BB84 protocol, a QKD system’s secret key rate is R = 1
2 Q{∆1[1−H2(e1)]−H2(E)}, where Q and E indicate the

count rate and quantum bit error rate (QBER) in the QKD system, while ∆1 and e1 indicate the probability and bit
error rate of single-photon pulses. When double decoy state protocol is adopted, it has been proved that [2]
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where aU
n (aL

n) is the upper (lower) bound of n photons’ probability (n = 0,1,2) of signal state, and a′Un (a′Ln ) is the
same value in decoy state. In our PNR scheme, when the attenuator in front of the monitoring SPD has a transmittance
of η , the possibility of the SPD’s not detecting a photon is P(η). If we choose η from {η0,η1,η2} (η0 = 1) randomly,
we have proved that
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λ is the DCR of the SPD. The InGaAs APD detectors with cooling used in QKD systems usually have a DCR of
around 10−7 to 10−5/pulse at the wavelength of 1550nm and the efficiency of 10%, but the DCR may rise up to a very
high level when the SPDs are not cooled down [3]. However, in our calculation, when λ is known and stable, aU(L)

n

can be got no matter what λ is, and the same conclusion is valid to a′U(L)
n . Thus, a room-temperature SPD with high

DCR can still be used for PNR monitoring.

3. Influences Caused by Parameter Fluctuations of SPD

At room temperature, the DCR and detection efficiency may fluctuate. In our experiment, the detector’s origin DCR λ
is 5×10−4/pulse and the efficiency is ηD is 10% at room temperature 1. Fig. 1 shows how the transmission distance
of a QKD system changes when the SPD’s parameters change.
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Fig. 1. The change of transmission distance when DCR (a) and detection efficiency (b) fluctuate.
The mean photon number of signal state and decoy state is 0.6 and 0.1 respectively.

In experiment, our detector’s DCR is not higher than 7 × 10−4/pulse at room temperature, while its efficiency
fluctuates within 2%. As a result, the transmission distance decreases less than 7km when considering the parameter
fluctuations, which means the monitoring is practical and only needs slight modification in real utilization.

4. Summary

We propose a PNR LSM scheme, achieving with an SPD working at room temperature. We prove that this scheme
can work when the detector’s DCR is known and stable, and analyzed the influences caused by the its parameter
fluctuations. The results show the feasibility of our monitoring scheme.
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1While the detector’s DCR at −30◦C is 5×10−6/pulse.


