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Einstein-Podolsky-Rosen steering [1] lies between entanglement and non-locality in the quantum correlation
hierarchy. It is a key resource for one-sided device-independent quantum key distribution (1SDI-QKD) proto-
cols [2] where only one of the two communicating parties needs to trust his or her measurement apparatus to
guarantee the information theoretic security of the protocol. With respect to full device-independence which can
be derived from non-locality, when both parties do no trust their measurement apparatuses, this greatly reduces
the experimental constraints, in particular in the detection efficiencies and propagation losses that can be toler-
ated. The optimization of 1SDI-QKD protocols for high key rates and minimum implementation requirements
is still ongoing. For this, a key ingredient is the choice of a good parameter estimation procedure to ensure the
security; one such procedure involves the violation of a steering inequality. A few such inequalities have been
proposed so far [3–5] with different requirements in terms of the number of measurement settings and different
performance in detecting steerability in mixed states.

Here we present the experimental investigation of a new steering inequality, based on so-called fine-grained
inequalities, that was introduced in Ref. [6]:
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where P (bB|aA) is the conditional probability for Bob to get the result b (with b ∈ {+,−}) when measuring B
(with B = P,Q two maximally incompatible measurement settings), whenever Alice claims that she measured
A (with A = S, T ) and obtained the result a (with a ∈ {+,−}). FLHS is the maximum value that Alice could
achieve by sending a local hidden state (LHS) to Bob, in a scenario where she does not know P and Q before
preparing the state and sending it to Bob.
This inequality requires only two measurement settings (P,Q for Bob, S, T for Alice) and can detect steerable
states among generalized bipartite Werner states of the following form:
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where p, α ∈ [0; 1].
If Alice prepares states of the form of Eq. (2) and if the measurement settings are of the form U = cos(θU )σz +

sin(θU )σx (with U = P,Q, S, T ), with θQ = θP + π/2 so that P and Q are maximally incompatible, we find
that the optimized value of the steering parameter is:
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where σ = sign(cos(θP + π/4)). Note that Bob needs to find the worst case angle θP in order to avoid false
positives whenever the state is not symmetric (i.e. α 6= 1/2). In Fig. 1a, we plot the theoretical lower bounds
for entanglement [7], steering (Eq. (1)) and Bell-nonlocality (CHSH inequality S ≤ 2 [8, 9]) for generalized
Werner states: all states with p larger than these bounds are entangled, steerable or non-local, respectively. Such
states violate Eq. (1) for a wide range of p and α, and in particular for Bell-local states, that do not violate Bell’s
inequalities (region between the red and the green curves). Our steering bound saturates the known bound of
p = 1/2 for Werner states (α = 1/2) and is conjectured to be optimal also for α 6= 1/2 as it lies between a lower
bound for steerable states and an upper bound for states with a LHS model that were both numerically calculated
in Ref. [10].

  

HWP @ χ

BBO
crystals

polarizer

Alice

Bob

fiber-coupler

a b

Figure 1. a) Lower p bounds vs α for generalized Werner states. b) Experimental set-up.

We experimentally tested this steering inequality with the set-up shown in Fig. 1b. It consists of a commer-
cial source of polarization-entangled photon pairs (‘quED’ from QuTools [11]), based on the scheme proposed
in Ref. [12]: two thin type-I BBO crystals with their crystal axis orthogonal to each other are pumped by a
CW laser beam at 405 nm whose polarization is adjusted by a half-wave plate (HWP) whose axis is oriented
with a tunable angle χ with respect to the vertical direction (see the dashed line box in Fig. 1b). Horizontally-
(Vertically-)polarized photon pairs at 810 nm are generated in the first (second) crystal by the vertical (horizontal)
polarization component of the pump beam. The source thus produces a general Werner state in polarization of the
form of Eq. (2), with α = cos2(2χ). The unpolarized background noise (optics fluorescence, ceiling lamps...) set
the parameter p to 0.90. After the source, one photon is sent to Alice and the other to Bob. At both stations, pro-
jective measurements are done with a rotating polarizer and a silicon single-photon avalanche photodiode (SPAD)
after coupling in a single-mode fibre. Coincidence counts between Alice’s and Bob’s detectors are recorded.

In Fig. 2a, we report the measurement results obtained for the steering parameter F (green diamonds) and
the Bell-CHSH parameter S [8, 9] (red dots), as a function of α. The mixed lines correspond to the local hidden
variable model (LHV) maximum values that saturate the inequalities. The solid lines are theoretical curves for
F and S corresponding to a generalized Werner state with p = 0.90, and the dashed lines are theoretical curves
taking into account a dephasing noise with a parameter η = 0.96 coming from a slight distinguishability between
the emission modes of the two BBO crystals. In Fig. 2b, F is plotted against S. In both graphs, the green shaded
area corresponds to experimentally detected steerable Bell-local states with F > 3

4 and S ≤ 2. Errors bars are
< 0.035 for α, 0.024 for S and 0.02 for F .
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Figure 2. Measurement results and theoretical simulations for generalized Werner states with p = 0.90.

Our results show that this fine-grained steering inequality allows to detect steerability with two measurement
settings in a wide range of states, in particular in Bell local states where other coarse-grained inequalities require
a larger number of measurements settings [4, 5]. In Ref. [6], a secret key rate r for 1SDI-QKD has been derived
against individual attacks: r ≥ log2[F/(2FLHS − F ]. However, this rate was proven for a slightly different
scenario where Bob’s measurement settings are fixed to P = σz and Q = σx (and thus known by Alice before
state preparation). Thus, in this simpler scenario, the LHS bound is higher (FLHS = (1 + 1/

√
2)/2 ≈ 0.854)

and steerable generalized Werner states are not all detected. Work is in progress to extend the secret key rate
derivation for 1SDI-QKD in the scenario where P and Q are unknown to Alice, a scenario which allows a much
better noise tolerance .
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