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Given some set of data shared by two parties, Alice and
Bob, are the correlations between them strong enough to
allow them to execute some protocol to be able to create a
secret key? Is it possible for Alice and Bob to be strongly
correlated and still not create a secret key by any proto-
col? Interestingly, while the existence of such correlations
has been proven to exist in the quantum case, where it is
called bound entanglement, the existence of such correla-
tions in the classical case, where is it called bound secrecy
or bound secret information, has remained unproven for
almost 17 years since it was first conjectured in 2000 [1]
(see also [2–4]). Our work [5] provides a new framework
for proving this fundamental conjecture in the context
of two-way postprocessing in prepare-and-measure-based
(PM-based) quantum key distribution (QKD). At the
same time, we make progress on another long-standing
question, namely, about the highest tolerable error-rate
thresholds for qubit-based six-state QKD protocols [6], in
which the classical data from which Alice and Bob wish
to create a secret key arises from measurement of quan-
tum states; see Fig. 1. Specifically, we conjecture based
on strong analytical and numerical evidence that there
does not exist a two-way postprocessing protocol distill-
ing secret key in the gap of Fig. 1, meaning, therefore,
that the gap is a domain of bound secrecy for the partic-
ular correlations shared by Alice and Bob in the protocol.
The symmetric extendability of quantum states, another
problem that has evaded a full solution for many years,
plays a critical role in our investigation, and our work also
provides an efficient numerical test for symmetric extend-
ability that forms a large part of our numerical evidence.
Our work thus lays the groundwork for a systematic in-
vestigation into the existence of two-way protocols and
provides a concrete route to a potential proof of our con-
jecture. A positive answer to the question of the existence
of bound secrecy would be a truly remarkable result and
would be a stark contrast to what was previously believed
about classical secret key creation. Furthermore, if our
conjecture is true, then we would have a rare example
of a scenario in which concepts from quantum informa-
tion theory lead to new insights in classical information
theory.

We assume in our work [5] that Alice and Bob share
many copies of the state ρAB

Q = (1 − 2Q)|Φ+〉〈Φ+| +
Q
2 1AB , where Q ∈

[
0, 12
]

is the quantum bit-error rate
(QBER) and |Φ+〉 = 1√

2
(|0, 0〉 + |1, 1〉). They obtain

their classical data by local measurement of each state in

the standard basis {|0〉, |1〉}. As indicated in Fig. 1, it is
known that ρAB

Q is separable forQ ≥ 1
3 and symmetrically

extendable for Q ≥ 1
6 [7]. The latter means, by definition,

that there exists a tripartite extension ρABB′

Q of ρAB
Q such

that ρAB′

Q = ρAB
Q . In this situation, it is known that

no one-way protocol involving communication from Alice
to Bob can be used to distill a secret key because the
system B′ is effectively a copy of B and could belong to
an eavesdropper (Eve), meaning that from Alice’s point
of view Bob and Eve are symmetric [7]. Distilling secret
key beyond 1

6 therefore requires a two-way postprocessing
protocol.
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FIG. 1: Key distillability as a function of the quantum bit-
error rate Q characterizing Alice and Bob’s classical data in
the six-state QKD protocol. The highest Q for which a pro-

tocol distilling secret key is known to exist is 5−
√
5

10
≈ 27.6%.

The existence of an intercept-resend attack for Q ≥ 1
3

im-
mediately precludes the existence of a protocol, leaving open
our question of interest, which is whether a secret key can be
distilled in the gap, that is, the yellow region.

Much work has been done on two-way postprocess-
ing protocols for the PM-based six-state protocol con-
sidered here [8–11]. The highest QBER achieved in these

works has been 5−
√
5

10 ≈ 27.6%, and efforts to increase
this threshold have been unsuccessful (see, in particular,
[10, 11]). Myhr et al. [12] then provided a different per-
spective on two-way protocols by shifting the goal from
distilling a secret key to breaking symmetric extendability.
Specifically, they argued that if Alice and Bob’s initial
data corresponds to a symmetrically extendable state,
then any successful two-way protocol must first trans-
form this state to one that is not symmetrically extend-
able. This is due to the fact that any two-way protocol
necessarily ends with a final round of one-way communi-
cation, which cannot be successful in distilling a secret
key unless Alice and Bob’s correlations are not symmetri-
cally extendable. To break symmetric extendability, they
proved that it is sufficient to consider one announcement
by Bob to Alice on a block of his data that can be de-



2

scribed by one Kraus operator on the quantum states. By
considering protocols in which Alice and Bob postselect
on some pre-chosen linear error correction code, they pro-
vided analytical and numerical evidence to suggest that
such generalized protocols cannot break symmetric ex-
tendability beyond 27.6%. Since only postselection on
linear codes was considered, their results left open the
possibility that postselection on nonlinear codes might
be able to break symmetric extendability beyond 27.6%.

We thus consider postselection on nonlinear codes
using the single-Kraus-operator formulation from [12].
Specifically, we argue that it is sufficient to consider only
postselection protocols and we provide an explicit form
for the Kraus operator. This allows us to obtain the
effective quantum state after postselection by Bob on ar-
bitrary error correction codes, i.e., both linear and non-
linear codes. It can be shown (see [5] for details) that
this effective state is of the form

ρA
nB̃

Q,C = (1An ⊗KC)(ρAB
Q )⊗n(1An ⊗KC)†, (1)

where

KC =

m−1∑
k=0

|k〉〈Ck| (2)

is the single Kraus operator corresponding to Bob’s post-
selection and C = {Ck}m−1k=0 is the set of codewords defin-
ing the error correction code. Using arguments from [12],
we argue that for the existence of a two-way postprocess-
ing protocol distilling secret key it is sufficient to consider
the symmetric extendability of the states (1). Specifi-
cally, we show that it is sufficient to determine for each
code C the updated threshold Q∗C , which we define as the
value of the QBER beyond which the state (1) is symmet-
rically extendable. (Note that without the Kraus opera-
tor the threshold is simply 1

6 for all n.) We then provide
numerical evidence that there does not exist a code C
whose updated threshold Q∗C exceeds 27.6%, hence there
does not exist a two-way postprocessing protocol in the
gap.

Specifically, after reducing the problem of determin-
ing the existence of a two-way protocol to the problem
of finding a code for which the postselected state (1) is
not symmetrically extendable in the gap (as described
above), we reduce the problem further by showing that
it is sufficient to search over inequivalent codes, and we
exhaustively search over all inequivalent codes of small
block lengths and number of codewords. Using semidefi-
nite programming, we are able to numerically determine
the thresholds Q∗C of all of these codes, and the discovered
trend is displayed in Fig. 2. Notably, we discover that
the repetition codes Rn = {00 · · · 00, 11 · · · 11} have the
highest threshold for each block length n of the codes,
with a decreasing threshold with increasing number of
codewords. Since we are able to show analytically that
in the limit n → ∞ the repetition code thresholds Q∗Rn

approach 27.6%, we conjecture that the repetition codes
have the highest threshold for each block length n and
therefore that there does not exist a code whose threshold
exceeds 27.6%.
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FIG. 2: For each class of codes with small block length n
and small number of codewords m, we have determined the
thresholds of all inequivalent codes in the class and plotted
the highest threshold from each class.

Finally, we consider a more restricted class of proto-
cols that involve postselection by Alice in addition to
postselection by Bob. We determine analytically in this
scenario that the class of simplex codes do not exceed
27.6%. We also numerically test over 540,000 codes of
high block length and number of codewords, and none of
them break symmetric extendability in the gap. This test
is performed using the connection between symmetrically
extendable states and antidegradable quantum channels.
Specifically, for the CP maps corresponding to the states
(1) via the Choi-Jamiolkowski correspondence, our test
involves picking an ansatz for the degrading map and
checking whether this map is completely positive and
trace preserving. This test is more time- and resource-
efficient than running semidefinite programs, and yields
conclusive results for 99% of the codes we tested.
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