Metrological approach to quantum random number generation (and a QRNG on a chip)

Morgan W. Mitchell

QCrypt Cambridge 22 September 2017

The Institute of Photonic Sciences

Applications of randomness

communications and data security

high-performance computing fundamental physics

QCrypt Cambridge 22 September 2017

A Million Random Digits with 100,000 Normal Deviates

by The RAND Corporation (Author)

🛉 🛱 🔭 🛛 682

682 customer reviews

Look inside 3

168			TA	BLE OF	RANDOM	DIGITS
08350	85967	73152	14511	85285	36009	95892
08351	07483	51453	11649	86348	76431	81594
08352	96283	01898	61414	83525	04231	13604
08353	49174	12074	98551	37895	93547	24769
08354	97366	39941	21225	93629	19574	71565
08355	90474	41469	16812	81542	81652	45554
08356	28599	64109	09497	76235	41383	31555
08357	25254	16210	89717	65997	82667	74624
08358	28785	02760	24359	99410	77319	73408
08359	84725	86576	86944	93296	10081	82454
08360	41059	66456	47679	66810	15941	84602
08361	67434	41045	82830	47617	36932	46728
08362	72766	68816	37643	19959	57550	49620
08363	92079	46784	66125	94932	64451	29275
08364	29187	40350	62533	73603	34075	16451
08365	74220	17612	65522	80607	19184	64164
08366	03786	02407	06098	92917	40434	60602
08367	75085	55558	15520	27038	25471	76107
08368	09161	33015	19155	11715	00551	24909
08369	75707	48992	64998	87080	39333	00767
08370	21333	48660	31288	00086	79889	75532
08371	65626	50061	42539	14812	48895	11196
08372	84380	07389	87891	76255	89604	41372
08373	46479	32072	80083	63868	70930	89654
08374	59847	97197	55147	76639	76971	55928
08375	31416	11231	27904	57383	31852	69137

published 1955, re-issued 2001

Top positive review See all 489 positive reviews >

1,880 people found this helpful

By a curious reader on October 26, 2006

Such a terrific reference work! But with so many terrific random digits, it's a shame they didn't sort them, to make it easier to find the one you're looking for.

There is no such thing as a random number – there are only methods to produce random numbers.

John von Neumann

QCrypt Cambridge 22 September 2017

-The RAND Corporation

QCrypt Cambridge 22 September 2017

PRODUCTION OF THE RANDOM DIGITS

The random digits in this book were produced by rerandomization of a basic table generated by an electronic roulette wheel. Briefly, a random frequency pulse source, providing on the average about 100,000 pulses per second, was gated about once per second by a constant frequency pulse. Pulse standardization circuits passed the pulses through a 5-place binary counter. In principle the machine was a 32place roulette wheel which made, on the average, about 3000 revolutions per trial and produced one number per second. A binary-to-decimal converter was used which converted 20 of the 32 numbers (the other twelve were discarded) and retained only the final digit of two-digit numbers; this final digit was fed into an IBM punch to produce finally a punched card table of random digits.

QCrypt Cambridge 22 September 2017

	BLOCK 1		BLOCK 2	
	χ^2	Probability	x ²	Probability
Frequency (9 d.f.*)	6.0	.74	21.0	.02
Odd-even (1 d.f.)	3.0	.09	7.0	<.01
Serial (81 d.f.)	78.7	.55	105.6	.03

recently "tuned up" one month later

Production from the original machine showed statistically significant biases, and the engineers had to make several modifications and refinements of the circuits before production of apparently satisfactory numbers was achieved. The basic table of a million digits was then produced during May and June of 1947. This table was subjected to fairly exhaustive tests and it was found that it still contained small but statistically significant biases. For example, the following table \$\$ shows the results of three tests (described later) on two blocks of 125,000 digits:

QCrypt Cambridge 22 September 2017

Observation: need to worry about your conversion to stable data, even if your basic source is completely random.

QCrypt Cambridge 22 September 2017

$y_i = (x_i + x_{i-50}) \mod 10$

At this point we had our original million digits, 20,000 I.B.M. cards with 50 digits to a card, with the small but perceptible odd-even bias disclosed by the statistical analysis. It was now iecided to rerandomize the table, or at least alter it, by a little roulette playing with it, to remove the odd-even bias. We added (mod 10) the digits in each card, digit by digit, to the corresponding digits of the previous card.

QCrypt Cambridge 22 September 2017

The derived table of one million digits

was then subjected to the various standard tests, frequency tests, serial tests, poker tests, etc. These million digits have a clean bill of health and have been adopted as RAND's table of random digits.

TABLE OF RANDOM DIGITS

168

★★★☆☆ Weirdest sudoku book ever

By John Peter O'connor on October 6, 2012 Format: Paperback

This has got to be the most useless set of sudoku puzzles ever. In my copy of the book, all of the puzzles were already filled in which I find really annoying and what is worse, most of them have been filled in wrongly.

physical RNG strategy in 1949

- 1) Make a device that you think should be random.
- 2) Use statistical tests to assess how random it really is
- 3) Massage the data until they pass the tests.

physical RNG strategy in ~ 2010

- 1) device -> quantum process
- 2) "frequency tests etc." -> Diehard(er), NIST, Crush, TestU01
- 3) "a little roulette playing" -> randomness extraction

QCrypt Cambridge 22 September 2017

New methodology

Statistical model

Inspired in metrology, e.g. precision spectroscopy

Mitchell et al. "Strong guarantees in ultrafast quantum random number generation" Physical Review A, 2015

QCrypt Cambridge 22 September 2017

Hypothetical example

QCrypt Cambridge 22 September 2017

phase diffusion randomness generation

Macroscopic signals, high-speed + low noise

1.1 Gbps
6 Gbps
43 Gbps
20/80* Gbps
68 Gbps

Jofre, et al. Opt. Express 2011 Xu, et al. Opt. Express 2012 Abellán, et al. Opt. Express 2014 Yuan, et al. Appl. Phys. Lett. 2014 Nie, et al. Rev. Sci. Inst. 2015

*randomness not claimed

ICFO photonic IC Abellá

Abellán, et al. Optica 2016

QCrypt Cambridge 22 September 2017

accelerated phase-diffusion RNG

arcsine distribution

QCrypt Cambridge 22 September 2017

Inspired in metrology, e.g. precision spectroscopy

Mitchell et al. "Strong guarantees in ultrafast quantum random number generation" Physical Review A, 2015

QCrypt Cambridge 22 September 2017

Phase diffusion driven by spontaneous emission

single frequency mode

diffusion rate due to spontaneous emission

photon number

QCrypt Cambridge 22 September 2017

QCrypt Cambridge 22 September 2017

cyclic variables become very smooth

QCrypt Cambridge 22 September 2017

good phase + bad phase = good phase

QCrypt Cambridge 22 September 2017

"Analog physics"

$$p_{I}(t) = p_{S}(t) + p_{L}(t) + 2\sqrt{p_{S}(t)p_{L}(t)}\cos\phi(t)$$

$$\downarrow \text{ finite speed of detector}$$

$$v_{I}(t) = v_{S}(t) + v_{L}(t) + \underbrace{2\mathcal{V}\sqrt{v_{S}(t)v_{L}(t)}\cos\phi(t)}_{\text{trusted variable }v_{\phi}} + v_{h/o} + v_{D}$$

$$\stackrel{\text{short}}{\underset{\text{path}}{\text{ path}}} \underset{\text{range } \pm \Delta v_{\phi}}{\underset{\text{range } \pm \Delta v_{\phi}}{\text{ bang-over noise}}}$$

QCrypt Cambridge 22 September 2017

QCrypt Cambridge 22 September 2017

Result of the statistical metrology

statistical model

"bound" = 6 sigma of observed variation

$$P(d=1)=rac{2}{\pi}\sqrt{rac{1}{2}+rac{v_{
m env}-\delta v_{
m ref}}{2\Delta v_{\phi}}}$$
 — upper bound on this

upper bound on P(d)

$$P(d=1) < rac{1}{2}(1+\epsilon)$$

 $\epsilon = 0.12$
 $H_\infty > 0.83$ bits

QCrypt Cambridge 22 September 2017

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen^{1,2}, H. Bernien^{1,2}[†], A. E. Dréau^{1,2}, A. Reiserer^{1,2}, N. Kalb^{1,2}, M. S. Blok^{1,2}, J. Ruitenberg^{1,2}, R. F. L. Vermeulen^{1,2}, R. N. Schouten^{1,2}, C. Abellán³, W. Amaya³, V. Pruneri^{3,4}, M. W. Mitchell^{3,4}, M. Markham⁵, D. J. Twitchen⁵, D. Elkouss¹, S. Wehner¹, T. H. Taminiau^{1,2} & R. Hanson^{1,2}

Nature, 29 Oct 2015

QCrypt Cambridge 22 September 2017

Bell test space-time loopholes

QCrypt Cambridge 22 September 2017

Bell test error tolerance

QCrypt Cambridge 22 September 2017

Bell test error tolerance

QCrypt Cambridge 22 September 2017

The New York Times

Sorry, Einstein. Quantum Study Suggests 'Spooky Action' Is Real.

By JOHN MARKOFF OCT. 21, 2015

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers B. Hensen et al. Nature, 29 October 2015

A significant-loophole-free test of Bell's theorem with entangled photons M. Giustina et al. Phys. Rev. Lett., 18 December 2015

A strong loophole-free test of local realism L. Shalm et al. Phys. Rev. Lett., 18 December 2015

Generation of fresh and pure random numbers for loophole-free Bell tests C. Abellan et al. Phys. Rev. Lett., 18 December 2015

QCrypt Cambridge 22 September 2017

Quantum entropy source on an InP photonic integrated circuit for random number generation

CARLOS ABELLAN,^{1,*} WALDIMAR AMAYA,¹ DAVID DOMENECH,² PASCUAL MUÑOZ,^{2,3} JOSE CAPMANY,^{2,3} STEFANO LONGHI,⁴ MORGAN W. MITCHELL,^{1,5} AND VALERIO PRUNERI^{1,5,6} 2016

QCrypt Cambridge 22 September 2017

Device design

QCrypt Cambridge 22 September 2017

Two-laser strategy

QCrypt Cambridge 22 September 2017

Conclusions and outlook

Methodology for rigorous experimental justification of quantum randomness claims.

High-speed randomness generation, up to 43 Gbps.

Integration in InP using a two-laser strategy.

Ongoing work

Rigorous modeling/characterization of the two-laser problem.

QCrypt Cambridge 22 September 2017

ICFO QRNG Collaboration

Valerio Pruneri Daniel Mitrani Waldimar Amaya

external: David Domenech Pascual Muñoz Jose Capmany Stefano Longhi Marcos Curty

QCrypt Cambridge 22 September 2017

Carlos

Abellán

The Institute of Photonic Sciences

