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Loss-tolerant (LT) QKD

Proposed to deal with imperfect sources that suffer from state preparation flaws

→ Basis dependent protocol

Alice sends just three states. Their only assumption is that they are characterised

and in the same qubit space.

Easy to implement experimentally, and in the asymptotic regime, can provide an

almost identical performance to a perfect BB84 protocol.

In the finite-key regime, previous security proofs used Azuma’s inequality, which

results in a significant performance drop.

Our work: Tighter finite-key security analysis based on random

sampling theory.

Two steps:

1. Show an equivalence to a hypothetical scenario by assigning tags;

2. Apply a random sampling argument to the hypothetical scenario.

Conclusions
• Our work: finite-key security analysis of  loss-tolerant QKD based on random 

sampling theory.

• Can be applied to the PM and MDI versions.

• Offers better results than the previous analysis based on Azuma’s inequality.
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To prove the security of QKD, the crucial step is typically to bound the phase-

error rate.

Basis independent protocols (𝜌𝑍 = 𝜌𝑋)

In BB84, the observed X-basis bit-error rate (𝑒𝑋) provides a random sample for

the Z-basis phase-error rate (𝑒ph). In the asymptotic regime, 𝑒𝑋 = 𝑒ph.

In the finite-key regime, obtaining a bound on 𝑒ph is a random sampling problem.

It can be solved using concentration inequalities for sums of independent RVs (e.g.

Chernoff bounds)

Basis dependent protocols (𝜌𝑍 ≠ 𝜌𝑋)

This may be due to the inherent design of the protocol, or to source flaws.

In this case, Eve can learn information about Alice’s basis choice.

The X-basis bit-error rate no longer provides a random sample

for the Z-basis phase error rate.

Moreover, under a coherent attack, the detection statistics of a round can

depend on the basis choices made in other rounds.

Difficult to apply concentration inequalities for independent RVs.

To deal with these correlations, security proofs typically use Azuma’s inequality for

sums of dependent RVs.

Problem: Less tight than Chernoff bounds →Worse finite-key performance.

Can we apply random sampling to basis-dependent protocols?

#1: Reduction to scenario in #2

In the LT protocol, the phase-error rate can be estimated by considering the

detection statistics of two “virtual” states, 𝝆𝐯𝐢𝐫𝟎 and 𝝆𝐯𝐢𝐫𝟏 , which are not emitted in

the actual protocol.

We show that, because they are in the same qubit space as the actual states, one can

always express them as an (operator-form) linear combination of the actual

states. Example:

𝜌vir1 = 𝜌0𝑍 +
1

2
𝜌1𝑍 −

1

2
𝜌0𝑋

which is similar to the scenario in #2, but here Alice does not actually emit 𝜌pos.

In general, we show that Alice can always assign random tags of pos and neg to her

emissions, in such a way that the average state with a tag of pos (neg) is 𝜌pos (𝜌neg).

Thanks to this, we find an equivalence to the scenario in #2, allowing us to apply its

random sampling argument to estimate the detection statistics of the virtual states,

and thus the phase-error rate.

Results

solid – our work

dashed – previous work based on Azuma’s inequality [1]

Motivation

#2: Hypothetical scenario

Alice sends three states, 𝜌vir, 𝜌pos, and 𝜌neg, satisfying

𝜌vir = |𝑐pos|𝜌pos − |𝑐neg|𝜌neg

In this scenario, the # of detections of 𝜌pos, and 𝜌neg can be directly observed, but

the # of detections of 𝜌vir cannot.

Using similar arguments as in Ref. [2], we show that obtaining a bound on the # of

detections of 𝝆𝐯𝐢𝐫 can be reduced to a random sampling problem and solved

using Chernoff bounds.

“pos” 
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Solution: Alice probabilistically assigns a tag of

pos to her emissions of 𝝆𝟎𝒁 and 𝝆𝟏𝒁, in such a way

that the average state with a tag of pos is 𝝆𝐩𝐨𝐬.

Prepare-and-measure LT

Measurement-device-independent LT
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