No control by either party (Bob does not
. Bob
learn x5, Alice does not learn b)

If Bob requests x,:
Correct x, with probability 1 — P

Incorrect x, with probability Pr

If Bob requests x;:
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Protocols with qubits and ququarts (2 qubits) are optimal
gquantum protocols using symmetric pure states
0.75} Qubit states (optimal) — solid line
Quitrit states (suboptimal) — dotted line
Ququart states (optimal) — dashed line
05! Best possible classical protocols — grey line
o - he optimal quantum protocols beat the best possible
Quantum Oblivious Transfer classical protocols in the region 1 — P; = 0.69.
* Alice sends one of four symmetric pure quantum states [ip*0*1)
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« One-sided security against Alice by no-signalling: Bob Pt __ A
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Completeness not possible, Pr # 0. | | - 1-P¥ with optimal measurement for Bob and with homodyne detection
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Cheating Success Bound for Bob By Failure Probability Py

* What state was prepared? - Lowest possible Pr for a given cheating probability for Bob:

« Measurement: n¥ = pYp=035U 505 * Distinguishability of mixed states |
» Re-express in orthogonal basis |B,) = X, Exp [lzl’flkl] ¥,

« Gram Matrix le = (kalqjl> _______________ _
s f = (PONW), fT = (POHW), * Eigenvalues of (pe=1 = pe=o) = i
g = (¥ |¥) .pf=—(1_—2i|;7i|)
 Find Eigenvalues 4; 2 &
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