## Oblivious transfer:

Alice has two bits, $x_{0}$ and $x$
Bob obtains $x_{b}$ where $b \in\{0,1\}$ ( $b$ usually chosen by Bob) Alice should not learn $b$, Bob does not learn $x_{\bar{b}}$ (other bit) Why? Oblivious transfer enables multiparty computation Perfect quantum oblivious transfer is impossible (except if e.g. quantum memory is restricted), but there are bounds on cheating probabilities for Alice and Bob

## mperfect oblivious transfer:

- Fails with probability $P_{f}$

Cheating probabilities can be lower than for perfect oblivious transfer
Part of how to deal with noise and imperfections
Connects standard oblivious transfer and (quantum) random access codes (RACs, QRACs)

One-sided security: One party, here Alice, cannot cheat at all.


No control by either party (Bob does not
learn $x_{\bar{b}}$, Alice does not learn $b$ )


## Bob

f Bob requests $x_{0}$ : Correct $x_{0}$ with probability $1-P_{f}$ Incorrect $x_{0}$ with probability $P_{f}$

If Bob requests $x_{1}$ :
Correct $x_{1}$ with probability $1-P_{f}$
Incorrect $x_{1}$ with probability $P_{f}$

Complete Oblivious Transfer, $\boldsymbol{P}_{\boldsymbol{f}}=\mathbf{0}$ : Imperfect security against Alice and Bob; if one of them cannot cheat, then the other party necessarily cheats cannot ch

Incomplete Oblivious Transfer, $\boldsymbol{P}_{\boldsymbol{f}} \neq \mathbf{0}$ :
Protocol sometimes fails BUT
Even when Alice cannot cheat at all (better than with a random guess), Bob's cheating probability is limited.


Optimal protocols using symmetric pure states
For a given failure probability $P_{f}$, Bob's cheating probability $B_{O T}$ is as low as possible and vice versa.

Protocols with qubits and ququarts (2 qubits) are optimal quantum protocols using symmetric pure states
Qubit states (optimal) - solid line
Qutrit states (suboptimal) - dotted line
Ququart states (optimal) - dashed line
Best possible classical protocols - grey line
The optimal quantum protocols beat the best possible classical protocols in the region $1-\boldsymbol{P}_{f} \gtrsim 0.69$.

Coherent state protocols - surprisingly poor performance $\left|\Psi^{i}\right\rangle\left|\Psi^{j}\right\rangle=| \pm \alpha / \sqrt{2}\rangle| \pm \alpha / \sqrt{2}\rangle$ $\stackrel{, j}{ } \rightarrow|\alpha, \alpha, \alpha,-\alpha\rangle,|\alpha, \alpha,-\alpha, \alpha\rangle, \ldots$
Phase-encode states $i j \rightarrow| \pm(i) \alpha\rangle$ with optimal measurement for Bob and with homodyne detection

## Cheating Success Bound for Bob $B_{o}$

- What state was prepared?
- Measurement: $\pi^{i j}=p^{i j} \hat{\rho}^{-0.5} \hat{\rho}^{i j} \hat{\rho}^{-0.5} \quad\left|\Psi^{01}\right\rangle$
- Gram Matrix $G_{k l}=\left\langle\Psi_{k} \mid \Psi_{l}\right\rangle$ $\cdot f=\left\langle\Psi^{00} \mid \Psi^{01}\right\rangle, f^{*}=\left\langle\Psi^{01} \mid \Psi^{00}\right\rangle, \quad\left|\Psi^{11}\right\rangle \quad\left|\Psi^{000}\right\rangle$ $g=\left\langle\Psi^{00} \mid \Psi^{11}\right\rangle$,
- Find Eigenvalues $\lambda_{i}$
$\left|\Psi^{10}\right\rangle$
- $B_{O T}=\frac{1}{16}(\sqrt{1+2 \mathfrak{R}(F)+G}+\sqrt{1-2 \mathfrak{R}(F)+G}+$ $\sqrt{1+2 \mathfrak{J}(F)-G}+\sqrt{1-2 \mathfrak{J}(F)-G})^{2}$

Failure Probability $\boldsymbol{P}_{\boldsymbol{f}}$

- Lowest possible $P_{f}$ for a given cheating probability for Bob:
- Distinguishability of mixed states
- Re-express in orthogonal basis $\left|B_{k}\right\rangle=\sum_{l} \operatorname{Exp}\left[\frac{i 2 \pi k l}{N}\right]\left|\Psi_{l}\right\rangle$
- Eigenvalues of $\left(\rho_{c=1}-\rho_{c=0}\right) \rightarrow \eta_{i}$
- $P_{f}=\frac{1}{2}\left(1-\frac{1}{2} \sum_{i}\left|\eta_{i}\right|\right)$
$\cdot P_{f}=\frac{1}{2}\left(1-\frac{1}{2} \sqrt{1-G^{2}+2 \sqrt{(1+G)^{2} \mathfrak{J}(F)^{2}+(1-G)^{2} \mathfrak{R}(F)^{2}-4 \Re(F)^{2} \mathfrak{J}(F)^{2}}}-(\ldots)\right)$

