Security of quantum key distribution with intensity correlations Víctor Zapatero¹, Álvaro Navarrete¹, Kiyoshi Tamaki², & Marcos Curty¹

¹EI Telecomunicación, Department of Signal Theory and Communications, University of Vigo, Vigo E-36310, Spain ²Faculty of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan

Summary

Decoy-state quantum key distribution (QKD) is a popular method to approximately achieve the performance of ideal single-photon sources by means of simpler and practical laser sources. In high-speed decoy-state QKD systems, however, intensity correlations between succeeding pulses leak information about the users' intensity settings, thus invalidating a key assumption of this approach. Here, we solve this pressing problem by developing a general technique to incorporate arbitrary intensity correlations to the security analysis of decoy-state QKD. This technique only requires to experimentally quantify two main parameters: the correlation range and the maximum relative deviation between the selected and the actually emitted intensities. As a side

contribution, we provide a non-standard derivation of the asymptotic secret key rate formula from the non-asymptotic one, in so revealing a necessary condition for the significance of the former.

1. Characterizing the intensity correlations

NOTATION

 $\vec{a}_k = a_1 a_2 \dots a_k$ (record of intensity settings selected up to round k) α_k (actually emitted intensity in round k)

In full generality, α_k is a continuous random variable whose probability distribution, $g_{\vec{a}_k}(\alpha_k)$, is fixed by the record of settings \vec{a}_k .

PHYSICAL ASSUMPTIONS ON THE CORRELATIONS

Assumption 1. The photon-number statistics of the source conditioned on the value of the actual intensity, α_k , are poissonian:

 $p(n_k | \alpha_k) = \frac{e^{-\alpha_k} \alpha_k^{n_k}}{n_k!}.$ Assumption 2. For all possible records of settings, \vec{a}_k , $\left| 1 - \frac{\alpha_k}{\alpha_k} \right| \le \delta_{\text{max}}.$

2. Main analytical result

arXiv:2105.11165

CENTRAL IDEA

The main idea is to pose a restriction on the maximum bias that Eve can induce between the *n*-photon yields and errors associated to different intensity settings, in so enabling the application of the decoy-state method. Fundamentally, the restriction follows from the indistinguishability of non-orthogonal quantum states, captivated by what we call "the Cauchy-Schwarz constraint".

QUANTITATIVE BOUNDS

UNIVERSI

In what follows, we refer to the standard polarization encoding BB84 protocol. Precisely, for any given round k, photon number n, intensity setting c and bit value r, we define the yield and the error probability as $Y_{n,c}^{(k)} = p^{(k)}(\text{click}|n, c, Z, Z)$ and $H_{n,c,r}^{(k)} = p^{(k)}(\text{click}|n, c, X, X, r)$, respectively. Also, note that we are conditioning here to coincident basis choices by Alice and

That is to say, $\alpha_k \in [a_k^-, a_k^+]$ with $a_k^{\pm} = a_k(1 \pm \delta_{\max})$, where δ_{\max} is the maximum relative deviation of the actual intensity with respect to its setting. From assumptions 1 and 2, it follows that

$$p_{n_k}|_{\vec{a}_k} = \int_{a_k}^{a_k} g_{\vec{a}_k}(\alpha_k) \frac{e^{-\alpha_k} \alpha_k^{n_k}}{n_k!} d\alpha_k.$$

Assumption 3. The intensity correlations have a finite range, say ξ , such that $g_{\vec{a}_k}(\alpha_k)$ is independent of those settings a_j with $k - j > \xi$.

3. Numerical results

The rate-distance performance of the decoy-state BB84 is shown in terms of the maximum relative deviation, δ_{max} , and the correlation range, ξ . A typical channel model is used, with detection efficiency $\eta_{\text{det}} = 65\%$, attenuation coefficient $\alpha_{\text{att}} = 0.2 \text{ dB/km}$, and dark count rate $p_{\text{d}} = 7.2 \cdot 10^{-8}$.

Bob (Z or X). Then, for any two distinct intensity settings *a* and *b*, one can show that their yields and error probabilities satisfy

$$G_{-}\left(Y_{n,a}^{(k)}, \tau_{ab,n}^{\xi}\right) \le Y_{n,b}^{(k)} \le G_{+}\left(Y_{n,a}^{(k)}, \tau_{ab,n}^{\xi}\right)$$

and

$$G_{-}\left(H_{n,a,r}^{(k)},\tau_{ab,n}^{\xi}\right) \le H_{n,b}^{(k)} \le G_{+}\left(H_{n,a,r}^{(k)},\tau_{ab,n}^{\xi}\right)$$

for all k and n, where G_{-} and G_{+} are known functions that follow from the Cauchy-Schwarz constraint, ξ is the correlation range and

$$\tau_{ab,n}^{\xi} = \begin{cases} e^{a^{-}+b^{-}-(a^{+}+b^{+})} \left[1 - \sum_{c} p_{c} \left(e^{-c^{-}} - e^{-c^{+}}\right)\right]^{2\xi} & \text{if } n = 0\\ e^{a^{+}+b^{+}-(a^{-}+b^{-})} \left(\frac{a^{-}b^{-}}{a^{+}b^{+}}\right)^{n} \left[1 - \sum_{c} p_{c} \left(e^{-c^{-}} - e^{-c^{+}}\right)\right]^{2\xi} & \text{if } n \ge 1. \end{cases}$$

Here, p_c is the probability of using intensity setting c in any given protocol round.

4. On the existence of an asymptotic formula

The so-called post-selection technique is invoked to establish the asymptotic equivalence between the secret key rate against collective attacks and the corresponding one against coherent attacks, whenever a certain permutation-invariance property holds. Nevertheless, pulse correlations of any kind generally invalidate this property, and therefore the equivalence disappears.

Alternatively, in this work we provide a simple and non-standard derivation of the asymptotic limit, in so revealing a necessary and sufficient condition for the asymptotic formula to apply. The condition can be written as

$$\lim_{N \to \infty} \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{Cov[X_i, X_j]}{N^2} = 0$$

for certain Bernoulli sequences $\{X_i\}_{i=1}^N$ directly related to the observables, N being the number of transmitted signals. If the above convergence condition does not hold, no asymptotic limit exists for the secret key rate.