
DECOY STATE MODEL

CHARACTERIZATION SCHEME AND GENERALIZED SPD MODEL 

A generalized method based on the decoy-state scheme is proposed and experimentally demonstrated to accurately

characterize single-photon detectors. Rigorous bounds for the background noise and SPDE are provided for both a SPAD and a

homodyne detector. The resulting bounds are verified with the traditional methods. It shows great potential to become a

standard toolbox for SPD characterization and be used in future quantum information applications.

GENERALISED DECOY-STATE SCHEME 

FOR RIGOROUS CHARACTERIZATION 

OF SINGLE-PHOTON DETECTORS

INTRODUCTION AND KEY CONTRIBUTIONS
Conventional single-photon detectors (SPDs) characterization methods

require detailed detector models, which are not always available. The

decoy-state scheme can provide rigorous bounds on the background noise

and single-photon detection efficiency (SPDE) without the need for any

prior knowledge of the detector model. This work provides a new and

generalized toolbox for rigorous SPDE characterization with relaxed

assumptions on the detector model, which could open up new possibilities

in device calibration standards and quantum information applications.
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EXPERIMENTAL RESULTS FOR AN SPAD AND A HOMODYNE DETECTOR
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Y0 is dark count and Y1 is the SPDE with noise included
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Vacuum-insensitive SPD

SPAD, SNSPD, PMT

X0 = Y0 = dark count

X1 = 1

SPDE is defined as η

Vacuum-sensitive SPD

Threshold homodyne detector

X0 = noise + vacuum state

X1 = noise + single photon

SPDE is defined as Y1
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Gain: Probability of a detection event

given input mean photon number μ [2-5]
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Considering statistic fluctuation in the

experiment, the gain can be bounded

using Hoeffding's inequality [6]

The input signal is mixed by three weak coherent states with different

mean photon numbers μ, ν1, and ν2 (0 ≤ 𝜈2 < 𝜈1, 𝜈1 + 𝜈2 < 𝜇)
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• Generalized method without the

requirement for detector model

• Provide rigorous bound on SPDE and

noise with finite-size analysis

• Precise measurement with weak

coherent source

• Multiphoton response, nonlinear

response, time-dependency does not

affect the result

For homodyne detector, μ, ν1, ν2 = 1.156, 0.095,

0.028, sample size 107, protocol error ε = 10-10

For SPAD, μ, ν1, ν2 = 0.960, 0.214, 0.007, sample size

108, protocol error ε = 10-10
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