Routing Strategies for Multiplexed, **High-Fidelity Quantum Networks**

School of Engineering

w(x, u) =

link state

<u>Yuan Lee¹</u>, Eric Bersin¹, Wenhan Dai^{1,2}, Dirk Englund¹

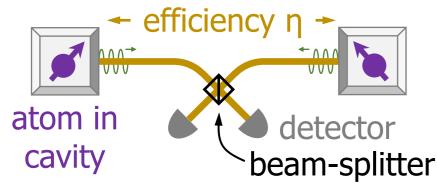
¹ Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology ² College of Information and Computer Sciences, University of Massachusetts, Amherst

Background

Quantum networks distribute entanglement between users for communication / sensing.

Near-term entanglement protocols are heralded and probabilistic.

e.g. single-photon (Cabrillo et al., 1999) protocol



Entanglement heralded with probability $p_{link} \leq 0.5 \eta$.

∴ Near-term ("1st gen") quantum networks need two-way classical communication.

Integer program framework

Approach:

At each node, maximize expected end-to-end entanglements conditional on local link state

(assuming optimal routing at other nodes).

Objective function: f(x, u, v) = number of swaps between (x, u) and (x, v) Under this approach,

• f(x, u, v) is determined f(x, u, v) separately from how modes at (x, u) and (x, v) are matched; $\Psi \Psi$ the objective function can be approximated by a linear function of $f(x, \cdot, \cdot)$.

Difficulties:

- Time needed for 2-way $cc \Rightarrow$ decoherence
- Probabilistic \Rightarrow uncertain routing decision

Min-cut bound

Quantum network capacity =

 $-\log_2(1 - \eta_{min-cut})$ ebits per network use where $\eta_{\text{min-cut}} = 1 - \max_{C = \text{cut}} \prod_{e \in C} (1 - \eta_e)$ (PLOB, 2017; Pirandola, 2019)

But 1st gen networks do not achieve single-link capacities, so the maximum achievable rate is the **min-cut bound**: min-cut end-to-end rate $\leq p_{min-cut}$ repeater node $\equiv \max_{C = cut} \sum_{link \in C} p_{link}$

Local routing

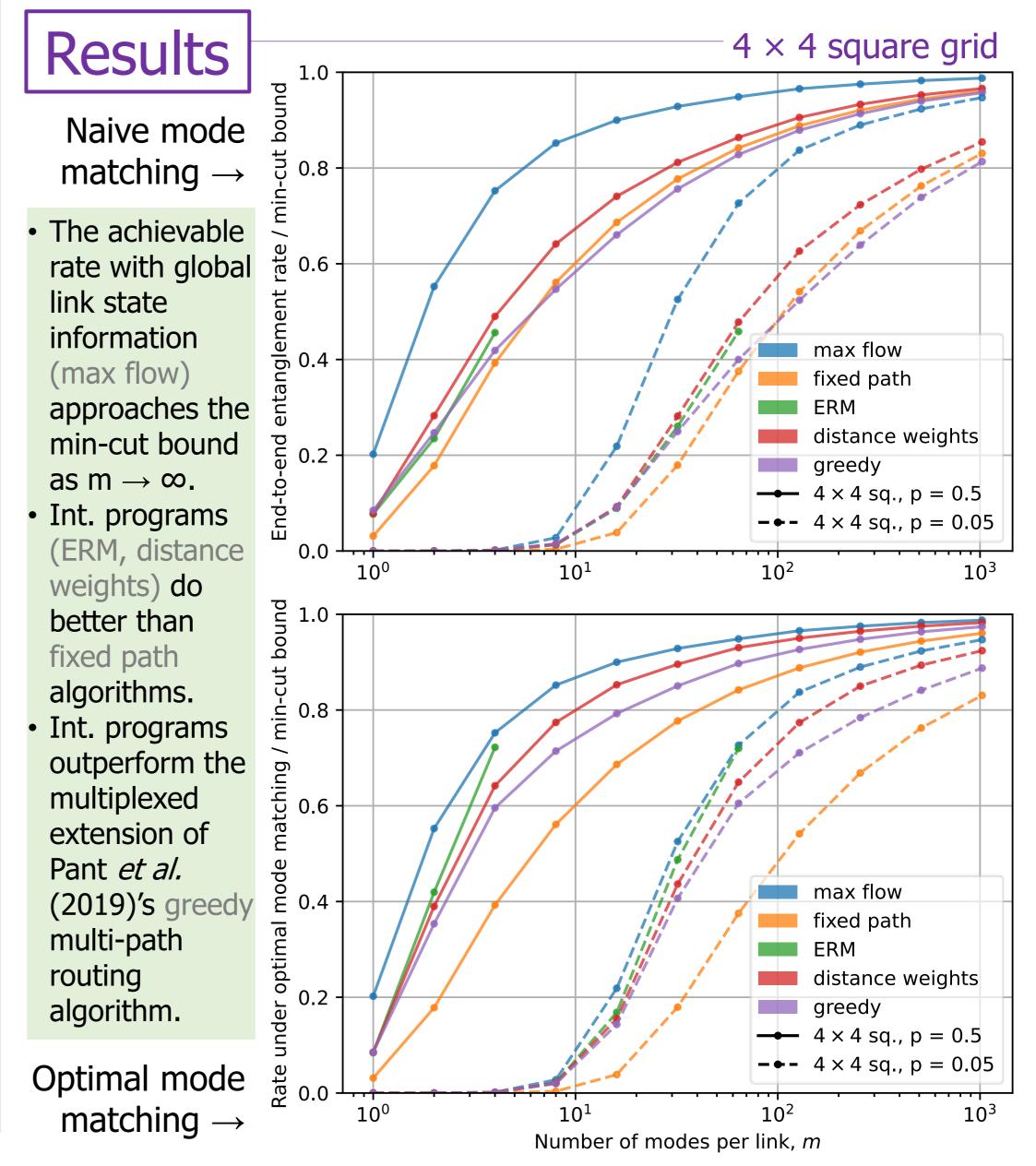
Consider **minimum-latency** networks: make routing decisions using only local link state info, to **minimize decoherence** & increase fidelity.

Choose other weights g(x, u, v) for the linear objective function in $f(x, u, v) \Rightarrow$ get a collection of routing strategies based on integer programs: max $_{f(x, \cdot, \cdot)} \sum_{(u, v) \sim x} g(x, u, v) \times f(x, u, v)$.

Possible weights:

- Original expected rate maximization weights $g_{ERM}(x, u, v) = P(u, v \text{ separated by link state's min-cut})$
- Distance weights

 $g_{distance}(x, u, v) = exp(-dist(Alice, u) - dist(Bob, v))$



Also, previous work (Pant *et al.* 2019) showed that (local) **multi-path routing** raises rates.

Role of multiplexing

If repeaters have all-to-all local connectivity, (arXiv:2005.01852)

 \uparrow multiplexing \Rightarrow more than linear \uparrow in rate \Rightarrow closer to min-cut bound.

e.g. length-N repeater chain, m modes per link: Rate $\approx mp_{link} (1 - [2 \log N / mp_{link}]^{0.5})$ $\rightarrow p_{min-cut} = mp_{link}$ when multiplexing $m \rightarrow \infty$.