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Background

Near-term entanglement protocols are heralded 
and probabilistic.
e.g. single-photon (Cabrillo et al., 1999) protocol

∴ Near-term (“1st gen”) quantum networks 

need two-way classical communication.

Difficulties:
• Time needed for 2-way cc ⇒ decoherence
• Probabilistic ⇒ uncertain routing decision

Min-cut bound

Quantum networks distribute entanglement 
between users for communication / sensing.

Quantum network capacity =
− log2(1 − ηmin-cut) ebits per network use
where ηmin-cut = 1 – max C = cut ∏ e ∈ C (1 – ηe)

(PLOB, 2017; Pirandola, 2019)ηac
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But 1st gen networks do not 
achieve single-link capacities, 
so the maximum achievable 
rate is the min-cut bound:

end-to-end rate ≤ pmin-cut

≡ max C = cut ∑ link ∈ C plink

Local routing

Also, previous work (Pant et al. 2019) showed 
that (local) multi-path routing raises rates.

Consider minimum-latency networks: make 
routing decisions using only local link state info, 
to minimize decoherence & increase fidelity.

Role of multiplexing

e.g. length-N repeater chain, m modes per link:
Rate ≈ mplink (1 − [2 log N / mplink]

0.5)
→ pmin-cut = mplink when multiplexing m → ∞. 

Integer program framework

At each node, maximize expected end-to-end 
entanglements conditional on local link state

(assuming optimal routing at other nodes).

Approach:

Under this approach,
• f(x, u, v) is determined 

separately from how modes at 
(x, u) and (x, v) are matched;

Objective function: f(x, u, v) = number of 
swaps between (x, u) and (x, v)
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4 f(x, u, v) 
= ?

w(x, u) = 
link state

• the objective function can be approximated by 
a linear function of f(x, ·, ·).

Choose other weights g(x, u, v) for the linear 
objective function in f(x, u, v) ⇒ get a collection 

of routing strategies based on integer programs:
max f(x, ·, ·) ∑ (u, v) ~ x g(x, u, v) × f(x, u, v).

Possible weights:
• Original expected rate maximization weights 
gERM(x, u, v) = P(u, v separated by link state’s min-cut)

• Distance weights 
gdistance(x, u, v) = exp( – dist(Alice, u) – dist(Bob, v))

Naive mode 
matching →

• The achievable 
rate with global 
link state 
information 
(max flow) 
approaches the 
min-cut bound 
as m → ∞. 

• Int. programs 
(ERM, distance 
weights) do 
better than 
fixed path 
algorithms. 

• Int. programs 
outperform the 
multiplexed 
extension of 
Pant et al. 
(2019)’s greedy
multi-path 
routing 
algorithm.

Optimal mode 
matching →

Results 4 × 4 square grid

atom in 
cavity
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efficiency η Entanglement heralded 
with probability

plink ≤ 0.5 η.

If repeaters have all-to-all local connectivity,
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↑ multiplexing ⇒ more than linear ↑ in rate
⇒ closer to min-cut bound.


