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Abstract

Error correction is an essential step in the classical post-
processing of all quantum key distribution (QKD) protocols. We
present error correction methods optimized for discrete variable
(DV) QKD and make them freely available as an ongoing open-
source project (github.com/XQP-Munich/LDPC4QKD).

LDPC codes are the subject of active research with many ap-
plications, such as for Wi-Fi and digital television. They have

been used for QKD error correction for a while, together with
methods such as Cascade [2]. A single LDPC code operates on
a fixed number of symbols and is optimized for a specific noise
level of the quantum channel. In practice, the quality of the quan-
tum channel fluctuates over time and across applications of a sin-
gle QKD system. Rate adaption solves this issue by modifying a
single LDPC code to adjust it to the current channel. We make

use of recent, dedicated rate adaption methods specialized for
Slepian-Wolf coding [1]. These offer advantages [3, 4] over most
standard methods (e.g. puncturing and shortening) used in for-
ward error correction and so far also for QKD error correction.

We invite contributions from the research community and plan
to add support for more protocols, such as CV-QKD, in the future,
incorporating further developments in QKD and channel coding.

Multi-Edge Type Protograph and Quasi-Cyclic LDPC Codes
QKD error correction using LDPC codes
Suppose Alice and Bob each have a string of bits (sifted keys) of length N that are identical, except for the ratio of wrong bits in the
string, the quantum bit error ratio (QBER).
To reconcile the two, Alice sends Bob a sequence of bits (the syndrome) of length M, which is the matrix-vector product (mod 2) of
her key with an M × N parity check matrix H. We call R = M

N the (leak) rate of H.
Bob uses a decoding algorithm (e.g. belief propagation) to correct his key to match Alice’s syndrome. The probability of decoding
failure is called the frame error rate (FER).
Most decoding failures happen when the decoding algorithm fails to converge. Nevertheless, in a QKD protocol, eror correction
using LDPC codes must be followed by a verification step.

LDPC code construction from protographs
A protograph [8] is a small matrix with integer coefficients that describes the degree distributions for a parity check matrix.

Each row of the protograph represents a type of check node (CN); each column represents a type of variable node (VN).
To construct an LDPC matrix, the protograph structure is repeated Z times and edges between nodes of corresponding types are
interleaved.
Interleaving is done via a progressive edge growth (PEG) algorithm. This allows the creation of a matrix with the correct degree
distrubution and few short cycles in the Tanner graph (important for good decoding performance using Belief Propagation).

Quasi-cyclic LDPC codes
Quasi-cyclic LDPC codes [9] are a structured class of
LDPC codes. Their parity check matrix is restricted to
be a block matrix of circulant matrices.
This structure allows memory-efficient storage of the
matrix and efficient syndrome computation.
It also allows lower complexity encoding when using
a generator matrix, which is beneficial for forward er-
ror correction. In our application the generator matrix
is not used.
Our quasi-cyclic codes are lifted from the protograph
LDPC codes (created as described above) using
methods similar to [9].

Example construction from protograph
Example (adapted from [1]): protograph S =

[
1 2

]
specifies one

type of CN and two types (called A, B) of VNs.
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Protograph Optimization
Protograph creation
Protographs with good thresholds constructed via a genetic algorithm (Differential
Evolution [7]) and tested via Density Evolution.

Protographs with rates 1/2 and 1/3

S1 =
[
2 3 2 4
1 0 2 5

]
S2 =

[
3 1 3 4 2 2
4 1 0 4 0 1

]
BSC thresholds (Density Evolution): 9.48% for S1 (from [1]) and 5.32% for S2.

Finite length performance
Performance estimates [5] (using Density Evolution) for the block lengths considered
in the construction.

Performance of constructed LDPC Codes
Decoding using belief propagation
Frame error rates for different codes (varying rates and sizes) are compared.
Simulations performed using AFF3CT [6] for better reproducibility
(for each reported FER, at least 400/FER frames were simulated).
Detailed simulation parameters and outputs are available in the repository.

Rate Adaption [1]
Need for rate adaption
For error correction, a syndrome of the sifted key is exchanged. The syndrome length is given by the number of
rows in the parity check matrix.
For fixed QBER, too short syndromes lead to frame errors, while too long syndromes are inefficient by leaking more
information to an eavesdropper than neccessary.
⇒ adapt syndrome length to current quantum channel

Rate adaptive code construction
Given “mother” matrix H1 with syndrome length m1, obtain “daugh-
ter” matrix H2 via an intermediate matrix H1→2:

H2 = H1→2H1

If H1→2 has size m2 ×m1, the rate adapted code H2 uses smaller
syndrome length m2. This procedure is continued to obtain more
different rates.
The intermediate matrix H1→2 should have full rank. This enables
the receiver to uniquely recover the syndrome of H1 from the syn-
drome of H2, together with some additional syndrome bits from
H1.
The Tanner graph of H1→2 can be constructed from an intermedi-
ate protograph S1→2.
We limit the possible S1→2 to have one or two values 1 in each row
and zeros otherwise. With this, each rate adaption step amounts
to combining two parity check equations of the mother matrix, se-
lected from types given by the protograph and to minimize short
cycles.

Combination of Tanner graphs
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Rate Adapted Performance
Rate adapted codes
We rate adapt each mother matrix to half its original rate (the rate
adaption technique allows further rate reduction) in steps of one bit.
Shown is rate adapted performance for the four smaller matrices.
See the repository for more details.

Frame Error rates of rate adapted codes

Reconciliation inefficiency
Let M be the syndrome length used to reconcile a key of length N.

The reconciliation inefficiency is f = M
N h2(QBER) = R

h2(QBER).

Goal: as small as possible inefficiency f by minimizing rate R = M
N .

Consider the average leak rate R under optimal amount of rate
adaption, counting frame errors as R = 1 (similar to [2]).
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