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Introduction

ML model [1]

Conclusion
• In our experiment, we have used 960 Mbits of data for each RNG to train and test our ML model. With a PC setup with 32 GB of RAM and an Nvidia

Quadpro P400 GPU processor, the total run time is around 3 hours (training 2 hours, testing 1 hour).
• Provided the training data is sufficiently large, our ML model is sensitive to imperfect randomness (deterministic sequence, bias & correlation).
• Compared to the NIST statistical test suite [3] and Dieharder [4], ML-based approach can evaluate the quality of the randomness using only a single

model.

Testing of PRNGs

RNG Parameters 𝑃 = 224 𝑃 = 226 𝑃 = 228 𝑃 = 230

Result Reject 𝐻0 Reject 𝐻0 Reject 𝐻0 Pass

Linear Congruential Generator 𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏 mod 𝑃

RNG Parameters Default

Result Pass

Mersenne Twister (MT19937)

RNG Parameters 𝜀 ≥ 0.01 𝜀 = 0.0015 𝜀 = 0.001

Result Reject 𝐻0 Reject 𝐻0 Pass

Biased RNG 𝑃 𝑍 = 1 = 1/2 + 𝜀

RNG Parameters 𝑟 = 0.18323 𝑟 = 0.13739 𝑟 = 0.10970

Result Reject 𝐻0 Reject 𝐻0 Pass

RNG with correlation

RNG Parameters 𝑃 = 217 − 1 𝑃 = 219 − 1 𝑃 = 223 − 595 𝑃 = 224 − 75

Result Reject 𝐻0 Reject 𝐻0 Reject 𝐻0 Pass

Inversive Congruential Generator 𝑦𝑛+1 = 𝑐𝑦𝑛
−1 + 𝑑 mod 𝑃 Linear Feedback Shift Register
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RNG Parameters State size = 24 State size = 28 State size = 32

Result Reject 𝐻0 Pass Pass

RNG Parameters 𝛼 = 10% 𝛼 = 5% 𝛼 = 2.5% 𝛼 = 1%

Result Pass Pass Pass Pass

QRNG based on quantum vacuum states [2]

ML Flow

Given 𝑋, the output from a pseudo-RNG (PRNG),
and 𝑋′, the output from a Quantum-RNG, is there
a way to differentiate 𝑋 from 𝑋′ without the use
of a fixed set of test statistics derived from the
samples?

We investigate the use of machine learning (ML)
as a potential tool for this purpose.
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Algorithm + seed Physical processes

Recurrent Convolutional Neural Network + Long-Short Term Memory (LSTM)

Uniformity & Correlation Test* Testing of a QRNG

Contact: hongjie@u.nus.edu
Quantum Communications Lab Group Website: 
https://www.ccwlim.com/

BS: Beam Splitter
PD: Photodiode
BHD: Balanced 
Homodyne Detection
TIA: Transimpedance 
Amplifier

We observe that our ML model is able
to pinpoint the deviations from
randomness that is present in PRNGs
for the cases where the period is
relatively small.

𝑟 = Pearson r correlation

* Generated from PRNGs

𝛼 = Level of significance
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