Certification of Random Number Generators using Machine Learning

Hong Jie Ng¹, Raymond Ho¹, Syed Assad², Ping Koy Lam², Omid Kavehei^{3,4}, Chao Wang¹, Nhan Duy Truong^{3,4}, Jing Yan Haw¹

¹Department of Electrical & Computer Engineering, National University of Singapore ²CQC2T, Department of Quantum Science, The Australian National University ³Australian Research Council Training Centre for Innovative BioEngineering, The University of Sydney ⁴NeuroSyd Lab, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney

CENTRE FOR **QUANTUM COMPUTATION &** COMMUNICATION TECHNOLOGY AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE

Introduction

Given X, the output from a pseudo-RNG (PRNG), and X', the output from a Quantum-RNG, is there a way to differentiate X from X' without the use of a fixed set of test statistics derived from the

Testing of PRNGs

Linear Congruential Generator		$x_{n+1} = ax_n + b \bmod P$				
RNG Parameters	$P = 2^{24}$	$P = 2^{26}$	$P = 2^{28}$	$P = 2^{30}$		
Result	Reject H ₀	Reject H ₀	Reject H ₀	Pass		

Inversive Congruential Generator		$y_{n+1} = cy_n^{-1} +$		
RNG Parameters	$P = 2^{17} - 1$	$P = 2^{19} - 1$	$P = 2^{23} - 595$	$P = 2^{24} - 75$
Result	Reject H ₀	Reject H ₀	Reject H ₀	Pass

Mersenne Twister (MT19937)				
RNG Parameters	Default			
Result	Pass			

Linear Feedback Shift Register

RNG Parameters	State size = 24	State size = 28	State size = 32
Result	Reject H ₀	Pass	Pass

Uniformity & Correlation Test*

 $P(Z = 1) = 1/2 + \varepsilon$ **Biased RNG**

RNG Parameters	$\varepsilon \ge 0.01$	$\varepsilon = 0.0015$	$\varepsilon = 0.001$	
Result	Reject H ₀	Reject H ₀	Pass	

RNG with correlation		r = Pearson r correlation				
RNG Parameters	r = 0.18323	r = 0.13739	r = 0.10970			

Testing of a QRNG

QRNG based on quantum vacuum states [2]

 α = Level of significance

We observe that our ML model is able to pinpoint the deviations from randomness that is present in PRNGs for the cases where the period is relatively small.

Result	Reject H_0	Reject H ₀	Pass	RNG Parameters		$\alpha = 10\%$	$\alpha = 5\%$	$\alpha = 2.5\%$	$\alpha = 1\%$
* Concrated from DDNCC			Re	esult	Pass	Pass	Pass	Pass	
' Generated from	PRINGS								

Conclusion

- In our experiment, we have used 960 Mbits of data for each RNG to train and test our ML model. With a PC setup with 32 GB of RAM and an Nvidia Quadpro P400 GPU processor, the total run time is around 3 hours (training 2 hours, testing 1 hour).
- Provided the training data is sufficiently large, our ML model is sensitive to imperfect randomness (deterministic sequence, bias & correlation).
- Compared to the NIST statistical test suite [3] and Dieharder [4], ML-based approach can evaluate the quality of the randomness using only a single model.
- [1] N. D. Truong, J. Y. Haw, S. M. Assad, P. K. Lam, and O. Kavehei, 'Machine Learning Cryptanalysis of a Quantum Random Number Generator', IEEE Transactions on Information Forensics and Security, vol. 14, no. 2, pp. 403–414, Feb. 2019.
- [2] J. Y. Haw et al., "Maximization of Extractable Randomness in a Quantum Random-Number Generator," Phys. Rev. Applied, vol. 3, no. 5, p. 054004, May 2015
- [3] A. Rukhin et al., 'NIST 800-22 A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications', Apr. 2010.
- [4] R. G. Brown, D. Eddelbuettel, and D. Bauer, "dieharder: A random number test suite," URL https://webhome.phy.duke.edu/~rgb/General/dieharder.php. C program archive dieharder, version, vol. 2, no. 3, 2020

Contact: <u>hongjie@u.nus.edu</u>

Quantum Communications Lab Group Website: https://www.ccwlim.com/