On the Compressed-Oracle Technique, and Post-Quantum Security of Proofs of Sequential Work

Kai-Min Chung ${ }^{1}$, Serge Fehr ${ }^{2}$, Yu-Hsuan Huang ${ }^{3}$, Tai-Ning Liao ${ }^{4}$

${ }^{1,3}$ Academia Sinica, Taiwan
${ }^{2}$ CWI Cryptology Group and Leiden University, The Netherlands
${ }^{4}$ National Taiwan University, Taiwan

Accpeted for publication at Eurocrypt 2021

Overview

- (Quantum) Random Oracle Model
- Summary of Our Results
- Lazy Sampling Technique - Classical and Quantum
- Our Results in More Detail

Random Oracle Model:

A way to analyze classical cryptographic schemes that use a hash function hash functions $\stackrel{\text { idealized }}{\approx}\left\{\begin{array}{l}\text { uniform sampled function }, \\ \text { everyone has access }\end{array}\right.$

Quantum Random Oracle Model

hash functions $\stackrel{\text { idealized }}{\approx}\left\{\begin{array}{l}\text { uniform sampled function, } \\ \text { everyone has quantum access }\end{array}\right.$

(Q)ROM with Parallel Queries

A Typical Example Problem

0 -preimage problem: finding x s.t. $H(x)=0$,

- well-studied and understood classically and quantumly,
- e.g. running Grover's search in parallel is known to be optimal for parallel queries.

Another Example Problem

Hash-chain problem: finding $x_{0}, x_{1}, \ldots, x_{q}$ s.t. $x_{i+1}=H\left(x_{i}\right)$:

$$
x_{0} \stackrel{H}{\longmapsto} x_{1} \stackrel{H}{\longmapsto} x_{2} \stackrel{H}{\longmapsto} \cdots \stackrel{H}{\longmapsto} x_{q}
$$

Another Example Problem

Hash-chain problem: finding $x_{0}, x_{1}, \ldots, x_{q}$ s.t. $x_{i+1}=H\left(x_{i}\right)$:

- easy with q sequential queries, but
- expected to be hard with $<q$ sequential queries,
- even if we can query k data points in parallel each round.

$$
x_{0} \stackrel{H}{\longmapsto} x_{1} \stackrel{H}{\longmapsto} x_{2} \stackrel{H}{\longmapsto} \cdots \stackrel{H}{\longmapsto} x_{q}
$$

Another Example Problem

Hash-chain problem: finding $x_{0}, x_{1}, \ldots, x_{q}$ s.t. $x_{i+1}=H\left(x_{i}\right)$:

- easy with q sequential queries, but
- expected to be hard with $<q$ sequential queries,
- even if we can query k data points in parallel each round.

Easy to show classically (i.e. without quantum access).

- No quantum proof prior to our work.

$$
x_{0} \stackrel{H}{\longmapsto} x_{1} \stackrel{H}{\longmapsto} x_{2} \stackrel{H}{\longmapsto} \cdots \stackrel{H}{\longmapsto} x_{q}
$$

Our Work

A framework for analyzing such problems in parallel QROM:

Our Work

A framework for analyzing such problems in parallel QROM:
Using our framework, one can

- prove quantum hardness using classical reasoning,
- by "lifting" the classical proof, if in suitable form,

Our Work

A framework for analyzing such problems in parallel QROM:
Using our framework, one can

- prove quantum hardness using classical reasoning,
- by "lifting" the classical proof, if in suitable form,
- Applied to various examples:
- simplify existing proofs, e.g. 0-preimage,
- obtain new bounds, e.g. collision, q-chain,
- main application: first post-quantum security of proof of sequential work scheme by [Cohen and Pietrzak, 2018].

Our Work

A framework for analyzing such problems in parallel QROM:
Using our framework, one can

- prove quantum hardness using classical reasoning,
- by "lifting" the classical proof, if in suitable form,
- Applied to various examples:
- simplify existing proofs, e.g. 0-preimage,
- obtain new bounds, e.g. collision, q-chain,
- main application: first post-quantum security of proof of sequential work scheme by [Cohen and Pietrzak, 2018].
Independent and concurrent work: [Blocki et al., 2021].

Lazy Sampling

$A^{H} \approx A^{D}$

x	$H(x)$
	y_{0}
00	y_{1}
	y_{2}
11	y_{3}

$x \quad D_{0}(x)=1$

1	1
	1
10	\perp
	\perp
11	\perp

Lazy Sampling, Formally

Simulate RO H with a database D :

- formalized as a partial function $D: \mathcal{X} \rightarrow \mathcal{Y} \cup\{\perp\}$,
- initially $D_{0}(x)=\perp$ everywhere,
- each query $x \in \mathcal{X}$, if $D_{i}(x)=\perp$, update D_{i+1} at x to a random $y \in \mathcal{Y}$,
- after q queries, $D_{q}(x) \neq \perp$ for $\leq q$ values of x.

Lazy Sampling, Formally

Simulate RO H with a database D :

- formalized as a partial function $D: \mathcal{X} \rightarrow \mathcal{Y} \cup\{\perp\}$,
- initially $D_{0}(x)=\perp$ everywhere,
- each query $x \in \mathcal{X}$, if $D_{i}(x)=\perp$, update D_{i+1} at x to a random $y \in \mathcal{Y}$,
- after q queries, $D_{q}(x) \neq \perp$ for $\leq q$ values of x.

Important (example) observation:
if there's no $x \in \mathcal{X}$ s.t. $D_{q}(x)=0$, then

- the adversary \mathcal{A} is unlikely to output x s.t. $H(x)=0$,
- best guess: some x s.t. $D_{q}(x)=\perp$,
- sucess probability $\leq 1 / \# \mathcal{Y}$.

Lazy Sampling, Formally

Simulate RO H with a database D :

- formalized as a partial function $D: \mathcal{X} \rightarrow \mathcal{Y} \cup\{\perp\}$,
- initially $D_{0}(x)=\perp$ everywhere,
- each query $x \in \mathcal{X}$, if $D_{i}(x)=\perp$, update D_{i+1} at x to a random $y \in \mathcal{Y}$,
- after q queries, $D_{q}(x) \neq \perp$ for $\leq q$ values of x.

Important (example) observation:
if there's no $x \in \mathcal{X}$ s.t. $D_{q}(x)=0$, then

- the adversary \mathcal{A} is unlikely to output x s.t. $H(x)=0$,
- best guess: some x s.t. $D_{q}(x)=\perp$,
- sucess probability $\leq 1 / \# \mathcal{Y}$.

$$
\operatorname{Pr}\left[\mathcal{A}^{H} \rightarrow x \text { s.t. } H(x)=0\right] \leq \operatorname{Pr}\left[\exists x \in \mathcal{X} \text { s.t. } D_{q}(x)=0\right]+1 / \# \mathcal{Y}
$$

Quantum Lazy Sampling

(A way to understand Zhandry's "compressed oracle" [Zhandry, 2019])

Quantum Lazy Sampling

Similarly, QRO can be simulated quantumly s.t. ${ }^{1}$

- the state of database is a superposition $\sum \alpha_{D}|D\rangle$ of partial functions $D: \mathcal{X} \rightarrow \mathcal{Y} \cup\{\perp\}$ with $\leq q$ non- \perp entries after q queries.
${ }^{1}$ This simulation is non-obvious, but is a way to understand the compressed oracle technique[Zhandry, 2019]

Quantum Lazy Sampling

Similarly, QRO can be simulated quantumly s.t. ${ }^{1}$

- the state of database is a superposition $\sum \alpha_{D}|D\rangle$ of partial functions $D: \mathcal{X} \rightarrow \mathcal{Y} \cup\{\perp\}$ with $\leq q$ non- \perp entries after q queries.

Similar (example) property:
if there's no x s.t. $D_{q}(x)=0$, where D_{q} now is obtained by measuring the database state, then

- the adversary \mathcal{A} is unlikely to output x s.t. $H(x)=0$,
${ }^{1}$ This simulation is non-obvious, but is a way to understand the compressed oracle technique[Zhandry, 2019]

Quantum Lazy Sampling

Similarly, QRO can be simulated quantumly s.t. ${ }^{1}$

- the state of database is a superposition $\sum \alpha_{D}|D\rangle$ of partial functions $D: \mathcal{X} \rightarrow \mathcal{Y} \cup\{\perp\}$ with $\leq q$ non- \perp entries after q queries.

Similar (example) property:
if there's no x s.t. $D_{q}(x)=0$, where D_{q} now is obtained by measuring the database state, then

- the adversary \mathcal{A} is unlikely to output x s.t. $H(x)=0$,
- except with a small error bounded as follows.

$$
\begin{aligned}
& \sqrt{\operatorname{Pr}\left[\mathcal{A}^{H} \rightarrow x \text { s.t. } H(x)=0\right]} \\
& \leq \sqrt{\operatorname{Pr}\left[\exists x \in \mathcal{X} \text { s.t. } D_{q}(x)=0\right]}+\sqrt{1 / \# \mathcal{Y}}
\end{aligned}
$$

${ }^{1}$ This simulation is non-obvious, but is a way to understand the compressed oracle technique[Zhandry, 2019]

Toy Example, and Its classical Analysis (for now)

How to bound $\operatorname{Pr}\left[D_{q} \in \operatorname{PRMG}\right]$, where PRMG $:=\{D \mid \exists x$ s.t. $D(x)=0\}$?

\perp
$y_{1} \neq 0$
\perp
\vdots
\vdots
$D_{i+1} \in P R M G$
\perp
$y_{1} \neq 0$
1
$y_{3}=0$
\vdots

$D_{g} \in P R M G$
1
$y_{1} \neq 0$
$y_{2} \neq 0$
$y_{3}=0$
\vdots

Toy Example, and Its classical Analysis (for now)

How to bound $\operatorname{Pr}\left[D_{q} \in \operatorname{PRMG}\right]$, where PRMG $:=\{D \mid \exists x$ s.t. $D(x)=0\}$?

1. $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right] \leq \sum_{i} \operatorname{Pr}\left[D_{i} \in \mathrm{PRMG} \mid D_{i-1} \notin \mathrm{PRMG}\right]$

$$
\leq q[\neg \text { PRMG } \xrightarrow{k} \text { PRMG }] \quad(\text { "rransition capacity") }
$$

\perp
$y_{1} \neq 0$
\perp
$y_{3}=0$
\vdots

$D_{\xi} \in P R M G$
1
$y_{1} \neq 0$
$y_{2} \neq 0$
$y_{3}=0$
\vdots
\equiv

Toy Example, and Its classical Analysis (for now)

How to bound $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right]$, where PRMG $:=\{D \mid \exists x$ s.t. $D(x)=0\}$?

1. $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right] \leq \sum_{i} \operatorname{Pr}\left[D_{i} \in \mathrm{PRMG} \mid D_{i-1} \notin \mathrm{PRMG}\right]$

$$
\leq q[\neg \text { PRMG } \xrightarrow{k} \text { PRMG }] \quad(\text { "rransition capacity") }
$$

2. Observe

$$
\begin{gathered}
D_{i-1} \notin \text { PRMG and } D_{i} \in \text { PRMG } \\
\quad \Downarrow \\
\exists j: D_{i}\left(x_{j}\right)=0 \neq D_{i-1}\left(x_{j}\right) .
\end{gathered}
$$

Thus, $[\neg$ PRMG $\xrightarrow{k} \mathrm{PRMG}] \leq k / \# \mathcal{Y}$,

Toy Example, and Its classical Analysis (for now)

How to bound $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right]$, where $\operatorname{PRMG}:=\{D \mid \exists x$ s.t. $D(x)=0\}$?

1. $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right] \leq \sum_{i} \operatorname{Pr}\left[D_{i} \in \mathrm{PRMG} \mid D_{i-1} \notin \mathrm{PRMG}\right]$

$$
\leq q[\neg \text { PRMG } \xrightarrow{k} \text { PRMG }](\text { "ransition capacity") }
$$

2. Observe

$$
\begin{gathered}
D_{i-1} \notin \mathrm{PRMG} \text { and } D_{i} \in \text { PRMG } \\
\forall \\
\exists j: D_{i}\left(x_{j}\right)=0 \neq D_{i-1}\left(x_{j}\right) .
\end{gathered}
$$

Thus, $[\neg \mathrm{PRMG} \xrightarrow{k} \mathrm{PRMG}] \leq k / \# \mathcal{Y}$,
All together: $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right] \leq q \cdot k / \# \mathcal{Y}$.

Toy Example, and Its classical Analysis (for now)

How to bound $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right]$, where $\operatorname{PRMG}:=\{D \mid \exists x$ s.t. $D(x)=0\}$?

1. $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right] \leq \sum_{i} \operatorname{Pr}\left[D_{i} \in \mathrm{PRMG} \mid D_{i-1} \notin \mathrm{PRMG}\right]$

$$
\leq q[\neg \text { PRMG } \xrightarrow{k} \text { PRMG }](\text { "transition capacity") }
$$

2. Observe ${ }^{2}$

$$
\begin{gathered}
D_{i-1} \notin \text { PRMG and } D_{i} \in \text { PRMG } \\
\quad \Downarrow \\
\exists j: D_{i}\left(x_{j}\right)=0 \neq D_{i-1}\left(x_{j}\right) .
\end{gathered}
$$

Thus, $[\neg$ PRMG $\xrightarrow{k} \mathrm{PRMG}] \leq k / \# \mathcal{Y}$,
All together: $\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right] \leq q \cdot k / \# \mathcal{Y}$.
${ }^{2}$ Terminology: "transition is (strongly) recognizable by local properties

$D_{g} \in P R M G$
1
$y_{1} \neq 0$
$y_{2} \neq 0$
$y_{3}=0$
\vdots

High-level Recipe of The Proof

1. Decompose into sum of transition capacities:

$$
\operatorname{Pr}\left[D_{q} \in \mathrm{P}\right] \leq \sum_{i}\left[\neg \mathrm{P}_{i-1} \xrightarrow{k} \mathrm{P}_{i}\right]\left(=q \cdot[\neg \mathrm{P} \xrightarrow{k} \mathrm{P}] \text { for } \mathrm{P}_{i}=\mathrm{P}\right) .
$$

2. Bound the transition capacities by local properties

$$
\left[\neg \mathrm{P}_{i-1} \xrightarrow{k} \mathrm{P}_{i}\right] \leq \sum_{j} \operatorname{Pr}\left[\mathrm{UNIF} \in \mathcal{L}_{j}\right],
$$

that recognize the transition.
Our framework:
same recipe, different definition of transition capacity $\llbracket \cdot \rightarrow \cdot \rrbracket$, adjusted formulas:

1. $\sqrt{\operatorname{Pr}\left[D_{q} \in \mathrm{P}\right]} \leq \sum \llbracket \neg \mathrm{P}_{i-1} \xrightarrow{k} \mathrm{P}_{i} \rrbracket$,
2. $\llbracket \neg \mathrm{P}_{i-1} \xrightarrow{k} \mathrm{P}_{i} \rrbracket \leq \sqrt{10 \sum_{j} \operatorname{Pr}\left[\text { UNIF } \in \mathcal{L}_{j}\right]}$ (same classical probabilities)
(or $\leq e \sum_{j} \sqrt{10 \operatorname{Pr}\left[\text { UNIF } \in \mathcal{L}_{j}\right]}$ in case of weak recognizabibility)

The 0-Preimage Example - Now Quantum

From classical analysis:

$$
\text { local properties } \mathcal{L}_{j}=\{0\} \text { with } \operatorname{Pr}\left[\text { UNIF } \in \mathcal{L}_{j}\right]=\frac{1}{\# \mathcal{Y}} \text {. }
$$

Our framework, Eq. 2:

$$
\llbracket \neg \mathrm{PRMG} \xrightarrow{k} \mathrm{PRMG} \rrbracket \leq \sqrt{10 \sum_{j} \operatorname{Pr}\left[\mathrm{UNIF} \in \mathcal{L}_{j}\right]} \leq \sqrt{\frac{10 k}{\# \mathcal{Y}}} .
$$

Our framework, Eq. 1:

$$
\sqrt{\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right]} \leq q \cdot \llbracket \neg \mathrm{PRMG} \xrightarrow{k} \mathrm{PRMG} \rrbracket \leq q \sqrt{\frac{10 k}{\# \mathcal{Y}}} .
$$

All together (reconfirming optimality of parallel Grover).

$$
\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right] \leq \frac{10 q^{2} k}{\# \mathcal{Y}}
$$

The 0-Preimage Example - Now Quantum

From classical analysis:

$$
\text { local properties } \mathcal{L}_{j}=\{0\} \text { with } \operatorname{Pr}\left[\text { UNIF } \in \mathcal{L}_{j}\right]=\frac{1}{\# \mathcal{Y}} .
$$

Our framework, Eq. 2:

$$
\llbracket \neg \mathrm{PRMG} \xrightarrow{k} \mathrm{PRMG} \rrbracket \leq \sqrt{10 \sum_{j} \operatorname{Pr}\left[\mathrm{UNIF} \in \mathcal{L}_{j}\right]} \leq \sqrt{\frac{10 k}{\# \mathcal{Y}}} .
$$

Our framework, Eq. 1:

$$
\sqrt{\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right]} \leq q \cdot \llbracket \neg \mathrm{PRMG} \xrightarrow{k} \mathrm{PRMG} \rrbracket \leq q \sqrt{\frac{10 k}{\# \mathcal{Y}}} .
$$

All together (reconfirming optimality of parallel Grover).

$$
\operatorname{Pr}\left[D_{q} \in \mathrm{PRMG}\right] \leq \frac{10 q^{2} k}{\# \mathcal{Y}}
$$

No need to understand definition of $\llbracket \cdot \rightarrow \cdot \rrbracket$. We can simply "lift" classical proof.

Additional Results

By the same recipe, we obtain several additional (new) results:

Q=kq	coarse-grained	fine-grained	algorithms
0-preimage	$O\left(\frac{Q^{2}}{\# \mathcal{Y}}\right)$	$O\left(\frac{k q^{2}}{\# \mathcal{Y}}\right)$	$\Omega\left(\frac{k q^{2}}{\# \mathcal{Y}}\right)$
collision	$O\left(\frac{Q^{3}}{\# \mathcal{Y}}\right)$	$O\left(\frac{k^{2} q^{3}}{\# \mathcal{Y}}\right)$	$\Omega\left(\frac{k^{2} q^{3}}{\# \mathcal{Y}}\right)$
q-chain	not applicable	$O\left(\frac{k^{3} q^{3}}{\# \mathcal{Y}}\right)$	$?$

[^0]
A More Complex Application: PoSW

We proved the post-quantum security of non-interactive PoSW constructed by [Cohen and Pietrzak, 2018].

$$
\operatorname{Adv} \leq O\left(k^{2} q^{2}\left(\frac{q+2}{2^{n+1}}\right)^{t}+\frac{k^{3} q^{3} n}{\# \mathcal{Y}}+\frac{t n}{\# \mathcal{Y}}\right)
$$

- q query rounds with k query points per round,
- n, t security parameters.

A More Complex Application: PoSW

We proved the post-quantum security of non-interactive PoSW constructed by [Cohen and Pietrzak, 2018].

$$
\operatorname{Adv} \leq O\left(k^{2} q^{2}\left(\frac{q+2}{2^{n+1}}\right)^{t}+\frac{k^{3} q^{3} n}{\# \mathcal{Y}}+\frac{t n}{\# \mathcal{Y}}\right)
$$

- q query rounds with k query points per round,
- n, t security parameters.

Technical challenge:

- PoSW scheme intertwines several problems (collision, q-chain, and more)
- Need tools to decompose complicated transition capacities.

Calculus for Capacities

We give basic rules to manipulate quantum transition capacities:

- $\llbracket P \xrightarrow{k} Q \rrbracket=\llbracket Q \xrightarrow{\mathrm{k}} \mathrm{P} \rrbracket$,
$-\max \left\{\llbracket \mathrm{Q} \xrightarrow{k} \mathrm{P} \rrbracket, \llbracket \mathrm{Q} \xrightarrow{k} \mathrm{P}^{\prime} \rrbracket\right\} \leq \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \cup \mathrm{P}^{\prime} \rrbracket \leq \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \rrbracket+\llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \rrbracket$,
- $\llbracket \mathrm{P} \cap \mathrm{Q} \xrightarrow{k} \mathrm{P}^{\prime} \rrbracket \leq \min \left\{\llbracket \mathrm{P}^{k} \mathrm{P}^{\prime} \rrbracket, \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P}^{\prime} \rrbracket\right\}$.

Calculus for Capacities

We give basic rules to manipulate quantum transition capacities:

- $\llbracket P \xrightarrow{k} Q \rrbracket=\llbracket Q \xrightarrow{k} P \rrbracket$,
$-\max \left\{\llbracket \mathrm{Q} \xrightarrow{k} \mathrm{P} \rrbracket, \llbracket \mathrm{Q} \xrightarrow{k} \mathrm{P}^{\prime} \rrbracket\right\} \leq \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \cup \mathrm{P}^{\prime} \rrbracket \leq \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \rrbracket+\llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \rrbracket$,
- $\llbracket \mathrm{P} \cap \mathrm{Q} \xrightarrow{k} \mathrm{P}^{\prime} \rrbracket \leq \min \left\{\llbracket \mathrm{P} \xrightarrow{k} \mathrm{P}^{\prime} \rrbracket, \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P}^{\prime} \rrbracket\right\}$.

But also more involved ones, e.g.

$$
\llbracket \neg \mathrm{P}_{0} \xrightarrow{k} \mathrm{P}_{n} \rrbracket \leq \sum_{i}\left(\llbracket \neg \mathrm{P}_{0} \xrightarrow{\bar{k}_{i}} \neg \mathrm{Q} \rrbracket+\llbracket \mathrm{Q} \backslash \mathrm{P}_{i-1} \xrightarrow{k_{i}} \mathrm{Q} \cap \mathrm{P}_{i} \rrbracket,\right)
$$

where $k=k_{1}+\cdots+k_{n}$ and $\bar{k}_{i}=k_{1}+\cdots+k_{i}$.

Calculus for Capacities

We give basic rules to manipulate quantum transition capacities:

- $\llbracket P \xrightarrow{k} Q \rrbracket=\llbracket Q \xrightarrow{k} P \rrbracket$,
$-\max \left\{\llbracket \mathrm{Q} \xrightarrow{k} \mathrm{P} \rrbracket, \llbracket \mathrm{Q} \xrightarrow{k} \mathrm{P}^{\prime} \rrbracket\right\} \leq \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \cup \mathrm{P}^{\prime} \rrbracket \leq \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \rrbracket+\llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P} \rrbracket$,
- $\llbracket \mathrm{P} \cap \mathrm{Q} \xrightarrow{k} \mathrm{P}^{\prime} \rrbracket \leq \min \left\{\llbracket \mathrm{P} \xrightarrow{k} \mathrm{P}^{\prime} \rrbracket, \llbracket \mathrm{Q} \xrightarrow{\mathrm{k}} \mathrm{P}^{\prime} \rrbracket\right\}$.

But also more involved ones, e.g.

$$
\llbracket \neg \mathrm{P}_{0} \xrightarrow{k} \mathrm{P}_{n} \rrbracket \leq \sum_{i}\left(\llbracket \neg \mathrm{P}_{0} \xrightarrow{\bar{k}_{i}} \neg \mathrm{Q} \rrbracket+\llbracket \mathrm{Q} \backslash \mathrm{P}_{i-1} \xrightarrow{k_{i}} \mathrm{Q} \cap \mathrm{P}_{i} \rrbracket,\right)
$$

where $k=k_{1}+\cdots+k_{n}$ and $\bar{k}_{i}=k_{1}+\cdots+k_{i}$.
Allow to work with $\llbracket \cdot \rightarrow \cdot \rrbracket$ on an abstract level, without understanding the definition.

Recap

By means of

- abstracting away technical aspects of Zhandry's compressed oracle technique, and
- proving new technical results for parallel queries.

We offer a framework that, when applicable,

- proves query-complexity bounds in the parallel-query QROM,
- using purely classical means, by "lifting" corresponding classical proofs.
Applied to different example problems:
recover known results, find new results.

That's It

Thanks for your listening!

Arxiv. 2010.11658
Eprint. 2020/1305

References I

围 Blocki, J., Lee, S., and Zhou, S. (2021).
On the security of proofs of sequential work in a post-quantum world.
In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

国 Cohen, B. and Pietrzak, K. (2018).
Simple proofs of sequential work.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 451-467.
Springer.

References II

冨 Zhandry, M. (2019). How to record quantum queries, and applications to quantum indifferentiability.
In Boldyreva, A. and Micciancio, D., editors, Advances in
Cryptology - CRYPTO 2019, volume 11693 of Lecture Notes
in Computer Science, pages 239-268. Springer.

[^0]: ${ }^{3}$ the red color bounds are our new results

