On the Compressed-Oracle Technique, and Post-Quantum Security of Proofs of Sequential Work

Kai-Min Chung¹, Serge Fehr², Yu-Hsuan Huang³, Tai-Ning Liao⁴

^{1,3}Academia Sinica, Taiwan
²CWI Cryptology Group and Leiden University, The Netherlands
⁴National Taiwan University, Taiwan

Accpeted for publication at Eurocrypt 2021

Overview

- (Quantum) Random Oracle Model
- Summary of Our Results
- Lazy Sampling Technique Classical and Quantum

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Our Results in More Detail

Random Oracle Model:

A way to analyze classical cryptographic schemes that use a hash function

hash functions $\stackrel{\mathrm{idealized}}{\approx} \begin{cases} \text{uniform sampled function,}\\ \text{everyone has access} \end{cases}$

∃ \0<</p>\0

Quantum Random Oracle Model

hash functions $\stackrel{\rm idealized}{\approx} \begin{cases} {\rm uniform\ sampled\ function,} \\ {\rm everyone\ has\ quantum\ access} \end{cases}$

SAC

(Q)ROM with Parallel Queries

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

A Typical Example Problem

0-preimage problem: finding x s.t. H(x) = 0,

- well-studied and understood classically and quantumly,
- e.g. running Grover's search in parallel is known to be optimal for parallel queries.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Another Example Problem

Hash-chain problem: finding x_0, x_1, \ldots, x_q s.t. $x_{i+1} = H(x_i)$:

 $x_0 \xrightarrow{H} x_1 \xrightarrow{H} x_2 \xrightarrow{H} \cdots \xrightarrow{H} x_a$

Another Example Problem

Hash-chain problem: finding x_0, x_1, \ldots, x_q s.t. $x_{i+1} = H(x_i)$:

- easy with q sequential queries, but
- expected to be hard with < q sequential queries,</p>
- even if we can query k data points in parallel each round.

$$x_0 \xrightarrow{H} x_1 \xrightarrow{H} x_2 \xrightarrow{H} \cdots \xrightarrow{H} x_q$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Another Example Problem

Hash-chain problem: finding x_0, x_1, \ldots, x_q s.t. $x_{i+1} = H(x_i)$:

- easy with q sequential queries, but
- expected to be hard with < q sequential queries,
- \blacktriangleright even if we can query k data points in parallel each round.

Easy to show classically (i.e. without quantum access).

No quantum proof prior to our work.

$$x_0 \xrightarrow{H} x_1 \xrightarrow{H} x_2 \xrightarrow{H} \cdots \xrightarrow{H} x_q$$

A framework for analyzing such problems in parallel QROM:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A framework for analyzing such problems in parallel QROM:

Using our framework, one can

- prove quantum hardness using classical reasoning,
- ▶ by "lifting" the classical proof, if in suitable form,

A framework for analyzing such problems in parallel QROM:

Using our framework, one can

- prove quantum hardness using classical reasoning,
- by "lifting" the classical proof, if in suitable form,
- Applied to various examples:
 - simplify existing proofs, e.g. 0-preimage,
 - obtain new bounds, e.g. collision, q-chain,
 - main application: first post-quantum security of proof of sequential work scheme by [Cohen and Pietrzak, 2018].

A framework for analyzing such problems in parallel QROM:

Using our framework, one can

- prove quantum hardness using classical reasoning,
- by "lifting" the classical proof, if in suitable form,
- Applied to various examples:
 - simplify existing proofs, e.g. 0-preimage,
 - obtain new bounds, e.g. collision, q-chain,
 - main application: first post-quantum security of proof of sequential work scheme by [Cohen and Pietrzak, 2018].

Independent and concurrent work: [Blocki et al., 2021].

Lazy Sampling

Lazy Sampling, Formally

Simulate RO H with a database D:

- formalized as a partial function $D: \mathcal{X} \to \mathcal{Y} \cup \{\bot\}$,
- initially $D_0(x) = \bot$ everywhere,
- ► each query x ∈ X, if D_i(x) = ⊥, update D_{i+1} at x to a random y ∈ Y,

▶ after q queries, $D_q(x) \neq \bot$ for $\leq q$ values of x.

Lazy Sampling, Formally

Simulate RO H with a database D:

- formalized as a partial function $D: \mathcal{X} \to \mathcal{Y} \cup \{\bot\}$,
- initially $D_0(x) = \bot$ everywhere,
- ► each query x ∈ X, if D_i(x) = ⊥, update D_{i+1} at x to a random y ∈ Y,
- after q queries, $D_q(x) \neq \bot$ for $\leq q$ values of x.

Important (example) observation:

if there's no $x \in \mathcal{X}$ s.t. $D_q(x) = 0$, then

• the adversary A is unlikely to output x s.t. H(x) = 0,

- ▶ best guess: some x s.t. $D_q(x) = \bot$,
- sucess probability $\leq 1/\#\mathcal{Y}$.

Lazy Sampling, Formally

Simulate RO H with a database D:

- formalized as a partial function $D: \mathcal{X} \to \mathcal{Y} \cup \{\bot\}$,
- initially $D_0(x) = \bot$ everywhere,
- ► each query x ∈ X, if D_i(x) = ⊥, update D_{i+1} at x to a random y ∈ Y,
- ▶ after *q* queries, $D_q(x) \neq \bot$ for $\leq q$ values of *x*.

Important (example) observation:

if there's no $x \in \mathcal{X}$ s.t. $D_q(x) = 0$, then

- the adversary A is unlikely to output x s.t. H(x) = 0,
- ▶ best guess: some x s.t. $D_q(x) = \bot$,
- sucess probability $\leq 1/\#\mathcal{Y}$.

$$\Pr\left[\mathcal{A}^{H} \to x \text{ s.t. } H(x) = 0\right] \leq \Pr\left[\exists x \in \mathcal{X} \text{ s.t. } D_{q}(x) = 0\right] + 1/\#\mathcal{Y}$$

(A way to understand Zhandry's "compressed oracle" [Zhandry, 2019])

Similarly, QRO can be simulated quantumly s.t.¹

the state of database is a superposition ∑ α_D|D⟩ of partial functions D : X → Y ∪ {⊥} with ≤ q non-⊥ entries after q queries.

Similarly, QRO can be simulated quantumly s.t. 1

the state of database is a superposition ∑ α_D|D⟩ of partial functions D : X → Y ∪ {⊥} with ≤ q non-⊥ entries after q queries.

Similar (example) property:

if there's no x s.t. $D_q(x) = 0$, where D_q now is obtained by **measuring** the database state, then

• the adversary A is unlikely to output x s.t. H(x) = 0,

Similarly, QRO can be simulated quantumly s.t.¹

the state of database is a superposition ∑ α_D|D⟩ of partial functions D : X → Y ∪ {⊥} with ≤ q non-⊥ entries after q queries.

Similar (example) property:

if there's no x s.t. $D_q(x) = 0$, where D_q now is obtained by **measuring** the database state, then

- the adversary A is unlikely to output x s.t. H(x) = 0,
- except with a small error bounded as follows.

$$\sqrt{\Pr\left[\mathcal{A}^{H} \to x \text{ s.t. } H(x) = 0\right]}$$

$$\leq \sqrt{\Pr\left[\exists x \in \mathcal{X} \text{ s.t. } D_{q}(x) = 0\right]} + \sqrt{1/\#\mathcal{Y}}$$

How to bound $Pr[D_a \in PRMG]$, where $PRMG := \{D | \exists x \text{ s.t. } D(x) = 0\}$? D, 1 D: = PRMG д ×+0 1 Din EPRMG Y +0 1 Y3 = 0 DyCPRMG 1

<ロ>

<u>У,</u>њо <u>У</u>____ Уз=0

How to bound $Pr[D_q \in PRMG]$, where $PRMG := \{D | \exists x \text{ s.t. } D(x) = 0\}$?

1. $\Pr[D_q \in \mathsf{PRMG}] \leq \sum_i \Pr[D_i \in \mathsf{PRMG} | D_{i-1} \notin \mathsf{PRMG}]$ $\leq q \left[\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG} \right] ("transition capacity")$

(日)、

How to bound $\Pr[D_q \in \Pr[MG]]$, where $\Pr[MG] := \{D | \exists x \text{ s.t. } D(x) = 0\}$?

1. $\Pr[D_q \in \mathsf{PRMG}] \le \sum_i \Pr[D_i \in \mathsf{PRMG} | D_{i-1} \notin \mathsf{PRMG}]$ $\le q \left[\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG} \right] ("transition capacity")$

2. Observe

Thus, $\left[\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG}\right] \leq k/\#\mathcal{Y}$,

How to bound $\Pr[D_q \in \Pr[MG]]$, where $\Pr[MG] := \{D | \exists x \text{ s.t. } D(x) = 0\}$?

1. $\Pr[D_q \in \mathsf{PRMG}] \le \sum_i \Pr[D_i \in \mathsf{PRMG} | D_{i-1} \notin \mathsf{PRMG}]$ $\le q \left[\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG} \right] ("transition capacity")$

2. Observe

 $D_{i-1}
ot\in \mathsf{PRMG} ext{ and } D_i \in \mathsf{PRMG}$ \Downarrow $\exists j: D_i(x_j) = 0
ot= D_{i-1}(x_j).$

Thus, $\left[\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG}\right] \leq k/\#\mathcal{Y}$, All together: $\Pr[D_q \in \mathsf{PRMG}] \leq q \cdot k/\#\mathcal{Y}$.

How to bound $Pr[D_q \in PRMG]$, where $PRMG := \{D | \exists x \text{ s.t. } D(x) = 0\}$?

4

D: + PRMG

7.*c

D. EPRMG

<u>},≉o</u> ⊥ }3=0

DEFPRMG

<u>メキロ</u> <u>メキロ</u> メョーロ

1. $\Pr[D_q \in \mathsf{PRMG}] \leq \sum_i \Pr[D_i \in \mathsf{PRMG} | D_{i-1} \notin \mathsf{PRMG}]$ $\leq q \left[\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG} \right] ("transition capacity")$

2. Observe²

 $D_{i-1} \not\in \mathsf{PRMG} \text{ and } D_i \in \mathsf{PRMG}$ \Downarrow $\exists j : D_i(x_j) = 0 \neq D_{i-1}(x_j).$

Thus, $\left[\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG}\right] \leq k/\#\mathcal{Y}$, All together: $\mathsf{Pr}[D_q \in \mathsf{PRMG}] \leq q \cdot k/\#\mathcal{Y}$.

²Terminology: "transition is (strongly) recognizable by local properties $\mathcal{L}_j = \{0\}$."

High-level Recipe of The Proof

1. Decompose into sum of transition capacities:

$$\Pr[D_q \in \mathsf{P}] \leq \sum_i \left[\neg \mathsf{P}_{i-1} \stackrel{k}{\rightarrow} \mathsf{P}_i \right] (= q \cdot \left[\neg \mathsf{P} \stackrel{k}{\rightarrow} \mathsf{P} \right] \text{ for } \mathsf{P}_i = \mathsf{P}).$$

2. Bound the transition capacities by local properties

$$\left[\neg \mathsf{P}_{i-1} \stackrel{k}{\rightarrow} \mathsf{P}_i \right] \leq \sum_j \mathsf{Pr}[\mathsf{UNIF} \in \mathcal{L}_j],$$

that recognize the transition.

Our framework:

same recipe, different definition of transition capacity $[\![\cdot \to \cdot]\!]$, adjusted formulas:

1.
$$\sqrt{\Pr[D_q \in P]} \leq \sum \left[\left[\neg P_{i-1} \stackrel{k}{\rightarrow} P_i \right] \right]$$
,
2. $\left[\left[\neg P_{i-1} \stackrel{k}{\rightarrow} P_i \right] \right] \leq \sqrt{10 \sum_j \Pr[\text{UNIF} \in \mathcal{L}_j]} \text{ (same classical probabilities)}$
(or $\leq e \sum_j \sqrt{10 \Pr[\text{UNIF} \in \mathcal{L}_j]}$ in case of weak recognizability)

The 0-Preimage Example - Now Quantum

From classical analysis:

local properties $\mathcal{L}_j = \{0\}$ with $Pr[UNIF \in \mathcal{L}_j] = \frac{1}{\#\mathcal{Y}}$. Our framework, Eq. 2:

 $[\![\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG}]\!] \leq \sqrt{10 \sum_{j} \mathsf{Pr}[\mathsf{UNIF} \in \mathcal{L}_{j}]} \leq \sqrt{\frac{10k}{\#\mathcal{Y}}}.$ Our framework, Eq. 1:

$$\sqrt{\Pr[D_q \in \mathsf{PRMG}]} \le q \cdot \left[\!\left[\neg \mathsf{PRMG} \stackrel{k}{\to} \mathsf{PRMG} \right]\!\right] \le q \sqrt{\frac{10k}{\# \mathcal{Y}}}.$$

All together (reconfirming optimality of parallel Grover).

$$\Pr[D_q \in \mathsf{PRMG}] \leq \frac{10q^2k}{\#\mathcal{Y}}.$$

The 0-Preimage Example - Now Quantum

From classical analysis:

local properties $\mathcal{L}_j = \{0\}$ with $\Pr[\text{UNIF} \in \mathcal{L}_j] = \frac{1}{\#\mathcal{Y}}$. Our framework, Eq. 2:

 $[\![\neg \mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG}]\!] \leq \sqrt{10 \sum_{j} \mathsf{Pr}[\mathsf{UNIF} \in \mathcal{L}_{j}]} \leq \sqrt{\frac{10k}{\#\mathcal{Y}}}.$ Our framework, Eq. 1:

$$\sqrt{\Pr[D_q \in \mathsf{PRMG}]} \le q \cdot \left[\!\left[\neg\mathsf{PRMG} \xrightarrow{k} \mathsf{PRMG}\right]\!\right] \le q \sqrt{\frac{10k}{\#\mathcal{Y}}}.$$

All together (reconfirming optimality of parallel Grover).

$$\Pr[D_q \in \mathsf{PRMG}] \leq \frac{10q^2k}{\#\mathcal{Y}}.$$

No need to understand definition of $\left[\!\left[\cdot\to\cdot\right]\!\right].$ We can simply "lift" classical proof.

By the same recipe, we obtain several additional (new) results:

Q=kq	coarse-grained	fine-grained	algorithms
0-preimage	$O\left(\frac{Q^2}{\#\mathcal{Y}}\right)$	$O\left(\frac{kq^2}{\#\mathcal{Y}}\right)$	$\Omega\left(\frac{kq^2}{\#\mathcal{Y}}\right)$
collision	$O\left(\frac{Q^3}{\#\mathcal{Y}}\right)$	$O\left(\frac{k^2q^3}{\#\mathcal{Y}}\right)$	$\Omega\left(\frac{k^2q^3}{\#\mathcal{Y}}\right)$
q-chain	not applicable	$O\left(\frac{k^3q^3}{\#\mathcal{Y}}\right)$?

³the red color bounds are our new results

A More Complex Application: PoSW

We proved the **post-quantum** security of non-interactive PoSW constructed by [Cohen and Pietrzak, 2018].

$$\mathsf{Adv} \le O\left(k^2q^2\left(\frac{q+2}{2^{n+1}}\right)^t + \frac{k^3q^3n}{\#\mathcal{Y}} + \frac{tn}{\#\mathcal{Y}}\right)$$

- q query rounds with k query points per round,
- ▶ *n*, *t* security parameters.

A More Complex Application: PoSW

We proved the **post-quantum** security of non-interactive PoSW constructed by [Cohen and Pietrzak, 2018].

$$\mathsf{Adv} \le O\left(k^2q^2\left(\frac{q+2}{2^{n+1}}\right)^t + \frac{k^3q^3n}{\#\mathcal{Y}} + \frac{tn}{\#\mathcal{Y}}\right)$$

- q query rounds with k query points per round,
- n, t security parameters.

Technical challenge:

PoSW scheme intertwines several problems (collision, q-chain, and more)

Need tools to decompose complicated transition capacities.

Calculus for Capacities

We give basic rules to manipulate quantum transition capacities:

$$\blacktriangleright \ \left[\!\left[\mathsf{P} \stackrel{k}{\to} \mathsf{Q}\right]\!\right] = \left[\!\left[\mathsf{Q} \stackrel{k}{\to} \mathsf{P}\right]\!\right],$$

► max{ $[[Q \xrightarrow{k} P]], [[Q \xrightarrow{k} P']]$ } $\leq [[Q \xrightarrow{k} P \cup P']] \leq [[Q \xrightarrow{k} P]] + [[Q \xrightarrow{k} P]]$,

► $\llbracket P \cap Q \xrightarrow{k} P' \rrbracket \le \min\{\llbracket P \xrightarrow{k} P' \rrbracket, \llbracket Q \xrightarrow{k} P' \rrbracket\}.$

Calculus for Capacities

We give basic rules to manipulate quantum transition capacities:

$$\blacktriangleright \ \left[\!\left[\mathsf{P} \stackrel{k}{\to} \mathsf{Q}\right]\!\right] = \left[\!\left[\mathsf{Q} \stackrel{k}{\to} \mathsf{P}\right]\!\right],$$

- ► max{ $[[Q \xrightarrow{k} P]], [[Q \xrightarrow{k} P']]$ } $\leq [[Q \xrightarrow{k} P \cup P']] \leq [[Q \xrightarrow{k} P]] + [[Q \xrightarrow{k} P]]$,
- ▶ $\llbracket P \cap Q \xrightarrow{k} P' \rrbracket \le \min\{\llbracket P \xrightarrow{k} P' \rrbracket, \llbracket Q \xrightarrow{k} P' \rrbracket\}.$

But also more involved ones, e.g.

$$\llbracket \neg \mathsf{P}_0 \stackrel{k}{\to} \mathsf{P}_n \rrbracket \leq \sum_{i} \left(\llbracket \neg \mathsf{P}_0 \stackrel{\bar{k}_i}{\to} \neg \mathsf{Q} \rrbracket + \llbracket \mathsf{Q} \backslash \mathsf{P}_{i-1} \stackrel{k_i}{\to} \mathsf{Q} \cap \mathsf{P}_i \rrbracket, \right)$$

where $k = k_1 + \cdots + k_n$ and $\bar{k}_i = k_1 + \cdots + k_i$.

Calculus for Capacities

We give basic rules to manipulate quantum transition capacities:

$$\blacktriangleright \ \left[\!\left[\mathsf{P} \stackrel{k}{\to} \mathsf{Q}\right]\!\right] = \left[\!\left[\mathsf{Q} \stackrel{k}{\to} \mathsf{P}\right]\!\right],$$

- ► max{ $[[Q \xrightarrow{k} P]], [[Q \xrightarrow{k} P']]$ } $\leq [[Q \xrightarrow{k} P \cup P']] \leq [[Q \xrightarrow{k} P]] + [[Q \xrightarrow{k} P]],$
- ▶ $\llbracket P \cap Q \xrightarrow{k} P' \rrbracket \le \min\{\llbracket P \xrightarrow{k} P' \rrbracket, \llbracket Q \xrightarrow{k} P' \rrbracket\}.$

But also more involved ones, e.g.

$$\llbracket \neg \mathsf{P}_0 \xrightarrow{k} \mathsf{P}_n \rrbracket \leq \sum_i \left(\llbracket \neg \mathsf{P}_0 \xrightarrow{\bar{k}_i} \neg \mathsf{Q} \rrbracket + \llbracket \mathsf{Q} \backslash \mathsf{P}_{i-1} \xrightarrow{k_i} \mathsf{Q} \cap \mathsf{P}_i \rrbracket, \right)$$

where $k = k_1 + \cdots + k_n$ and $\bar{k}_i = k_1 + \cdots + k_i$.

Allow to work with $\left[\!\left[\cdot\to\cdot\right]\!\right]$ on an abstract level, without understanding the definition.

Recap

By means of

- abstracting away technical aspects of Zhandry's compressed oracle technique, and
- proving new technical results for parallel queries.

We offer a framework that, when applicable,

proves query-complexity bounds in the parallel-query QROM,

 using purely classical means, by "lifting" corresponding classical proofs.

Applied to different example problems:

recover known results, find new results.

That's It

Thanks for your listening!

Arxiv. 2010.11658 Eprint. 2020/1305

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

References I

Blocki, J., Lee, S., and Zhou, S. (2021).
 On the security of proofs of sequential work in a post-quantum world.
 In 2nd Conference on Information-Theoretic Cryptography

(ITC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

 Cohen, B. and Pietrzak, K. (2018).
 Simple proofs of sequential work.
 In <u>Annual International Conference on the Theory and</u> <u>Applications of Cryptographic Techniques</u>, pages 451–467.
 Springer.

References II

Zhandry, M. (2019).

How to record quantum queries, and applications to quantum indifferentiability.

In Boldyreva, A. and Micciancio, D., editors, <u>Advances in</u> <u>Cryptology - CRYPTO 2019</u>, volume 11693 of <u>Lecture Notes</u> in Computer Science, pages 239–268. Springer.