Kwiat Quantum Information Group

Drone-based Quantum Key Distribution QCrypt 2021

Andrew Conrad¹, Samantha Isaac¹, Roderick Cochran², Daniel Sanchez-Rosales², Akash Gutha², Tahereh Rezaei¹, Brian Wilens¹, Daniel J. Gauthier², Paul Kwiat¹

¹Department of Physics, Illinois Quantum Information Science & Technology Center, University of Illinois Urbana-Champaign (UIUC)

²Department of Physics, The Ohio State University (OSU)

Drone Applications Overview

Drone Applications:

- Drone Taxis
- Cinematography
 - Many movies use drones
- Situational awareness
 - Disaster awareness
- Defense
 - Predator Drone
- Package delivery
 - Organ donations
 - Covid-19 Vaccine¹

Drone Taxis

Drone Cinematography

Limited Package Delivery

<u>Defense</u>

[1] https://www.theverge.com/2021/3/9/22320965/drone-delivery-vaccine-ghana-zipline-cold-chain-storage

Drone Attack Vectors

Drone Attack Vectors:

- Signal Spoofing:
 - Command and control signals
 - Sensor inputs
- Denial of Service:
 - Command and control signals
 - Sensor inputs

Captured RQ-170 Drone

Quantum Security

Quantum approaches such as Quantum Key Distribution (QKD) can offer improved security for future done constellations

- Many applications require free-space links, e.g., ships, planes, satellites
- Turbulence and fog mitigation
- Entanglement distribution has been established between droneground¹, and drone-drone-ground relay²
- Gap:
 - Short-range mobile QKD Communication Systems
 - Drone-to-Drone Full-System QKD

¹Liu, Hua-Ying, et al. "Drone-based all-weather entanglement distribution." *arXiv preprint arXiv:1905.09527* (2019). ²Liu, Hua-Ying, et al. "Optical-relayed entanglement distribution using drones as mobile nodes." *Physical Review Letters* 126.2 (2021): 020503.

4

Drone-based QKD

Critical Subsystems

- Drone Platform
- Compact QKD Source (Dual Technology Development)
- TX Optics (Quantum State Preparation)
- Pointing, Acquisition, and Tracking (PAT) Subsystem
- RX Optics (Quantum State Projection)
- Single-Photon Detectors
- Time-Tagger
- Time Synchronization (Dual Approach)

DJI S1000+ Drone

Drone Platform

DJI S1000+ Specifications

- Manufacturer: DJI [China]
- Diameter: 1.045 m
- Max Power: 4 kW
- Payload Capacity: 6.6 kg
- Flight Controller: A2/WooKong [both Chinese]
- Redundant Subsystems: None

Alta 8 Pro Specifications

- Manufacturer: Freefly Systems [U.S. Based]
- Diameter: 1.325 m
- Max Power: 7.6 kW
- Payload Capacity: 11.9 kg
- Flight Controller: Freefly Custom Build
- Hover Time: ~15 min ∞ (power tether)
- Redundant Subsystems: Dual Batteries, Dual Flight Controller Wire Harnesses

QKD Source (Resonant Cavity LEDs)

Use one emitter per quantum state Need low power and weight for drone operation

• Broad-band light resonant-cavity LED¹,

QCypt 2021 Poster Session

209. Preparing Indistinguishable States for a Prepare-and-Measure BB84 Polarization-Based Decoy State QKD Protocol Using Three FPGA-Driven LEDs

Daniel Sanchez-Rosales (Ohio State University); Roderick D. Cochran (Ohio State University); Daniel J. Gauthier (Ohio State University)

- The spectra from the three LEDs is broad (~12 nm) and they are partially distinguishable (78% overlap), as shown in Figure 2.
- By passing the optical pulses through a 1 nm narrow-band filter (Andover 656FS02-12.5), the overlap is drastically improved to 94.6%.

Temporal Overlap

- We use dynamic shifting of the FPGA phase-locked-loops to control the phase and the width of the electrical pulses that drive the LEDs.
- This allows us to control the optical pulses produced by the LEDs with a resolution of 250 ps.
- We drive a single LED with a 10-ns wide electrical signal at a repetition rate of 12.5 MHz.
- The resulting adjusted temporal waveforms are 97.1% overlapped

QKD Source (Resonant Cavity LEDs)

- Direct-drive LEDs with FPGA (Altera DE0-SoC)
- Two FPGA channels drive a single LED for signal and a decoy state

- 3D-printed custom coupler to mate with single-mode fiber
- Adjustment screws maximize SMF coupling

Roithner LaserTechnik RC650-TO46FW

QKD Source (Polarization Modulator)

Secondary QKD Source

- Custom Polarization Modulator (AdvR)
- Input Polarization Maintaining Fiber (PMF) is keyed at 45° w.r.t. KTP fast axis
- Frequency response 6 GHz
- Low $V\pi_{/_2}$
- RF signal modulates KTP to produce target states (for testing purposes)

Voltage	Phase	State
0	0	$ D\rangle$
$+V\pi/2$	$e^{+i\pi/2}$	$ R\rangle$
$-V\pi_{/2}$	$e^{-i\pi/2}$	$ L\rangle$

OSCILLOSCOPE

Tektronix TD520228

CHI

High Voltage Amplifier

HVA200

input output

Fidelity and Quantum Bit Error Rate

 I_0

Key

Attenuator

Polarizer

TX/RX Optics

TX/RX Optics

- Custom 3D-printed Design
- TX: Quantum State Preparation
- RX: Quantum Projection Measurements
- Critical Components:
 - Polarizing Beam Splitter (PBS)
 - Beam Splitter
 - Polarizers
 - Waveplates
 - Collimators
 - IR Beacon
 - IR Camera
 - Fast Steering Mirrors (FSM)

TX Optics Bench

RX Optics Bench

RX Payload For PAT Testing

PAT Subsystem (Course Adjustment)

Outer-Control Loop Calibration

- Course pointing corrections
- IR Beacon/IR Camera
- Image processing to identify location in camera's reference frame
- Steers gimbal to drive IR image location to setpoint
- Older design iteration

 TX Drone
 RX Drone

 IR Beacon
 IR Camera

 IR Camera
 IR Beacon

 IR Camera
 IR Beacon

PAT Subsystem (Fine Adjustment)

PAT Subsystem (Fine Adjustment)

- Co-propagating beams
 - TX: 705-nm Beacon
 - RX: 520-nm Beacon
- Position Sensitive Diode (PSD)
 - Senses beacon beam location
 - Two Fast Steering Mirrors (FSM) receive error signal and adjust beacon beam location
- Long-Range IR camera is used for initial acquisition and re-acquisition

Inner-Loop Calibration

Inner-Control Loop Calibration

- Angular Resolver (AR) sensor is constructed using a focusing lens and a Position Sensitive Diode (PSD)
- Senses incoming Angle of Arrival (AoA) of beacon
- Closed-Loop control adjusts FSMs to set Angle of Departure (AoD) equal to AoA

Angular Resolver Sensor

Inner-Loop Calibration

Linear Homography Calibration – Added a stop aperture to reduce image distortion on PSD.

PAT System Performance: Ground Locking

Outdoor Ground-to-Ground Locking:

- Both drones are on the ground and 10 meters apart
- Measured Coupling Efficiency
- Outer and Inner Control Loops are sequentially turned on
- Channel loss is minimum when both control loops are operational

Ground-to-Air Locking

Outdoor Ground-to-Air Locking:

- TX Drone on ground, RX Drone in air
- Measured Channel Loss (dB)
- Outer and Inner Loops are both on
- High wind environment (22 km/hr)

Air-to-Air Locking

PAT System Performance: Air-to-Air Locking

Outdoor Air-to-Air Locking:

- Both drones are airborne and 10 meters apart
- Measured an average 27.1 dB
 Channel Loss through free-space channel (10 min duration)
- Low wind environment
- Limiting factor is the latency of feedback data link between drones (older design iteration)

Single-Photon Detectors

Single-Photon Detector

- 4 Channel
- Perkin Elmer (Part Number: SPCM-AQ4C)
- ~60% efficiency @ QKD wavelength
- 1.5 M C/s before saturation
- Custom cable assembly allows interface card to wrap under the detector module → reduce largest dimension

SPCM-AQ4C

FPGA Time Tagger

FPGA Time Tagger

- FPGA Model Number (Intel DE-10 Standard)
 - Cyclone VSX
 - High-Speed I/O
- Single-Photon Detector outputs clicks recorded using a reference clock of 100 MHz
- Records channel information and time tags to an on-board SD card

DE-10 Standard

Time Synchronization

Software Defined Radio (SDR)

- Frequency Range 70 MHz 6 GHz
- Instantaneous Bandwidth: 56 MHz
- QKD and Timing signal delayed by the same amount
- Idea: QKD and RF signals travel at the same speed → compensates for relative motion between drones

I-Q Timing Spectrum

Software-based Time Synchronization

Time-Synchronization Algorithm

- Probabilistic synchronization approach
- Performed during post-processing:
 - 1. Alice and Bob exchange basis information
 - 2. Bob computes likelihood that a given data in time tags was sent from Alice (using apriori probabilities, e.g., mean photon number, detector dark counts, and expected polarization)
 - 3. Likelihoods are compared using a Bayesian aggregation approach
 - 4. Number of events at each interval computed via Fast Fourier Transform (FFT)

QCrypt 2021 Poster Session:

192. **Qubit-based clock synchronization for QKD systems using a Bayesian approach** Roderick D. Cochran (The Ohio State University); Daniel J. Gauthier (Ohio State University) [abstract]

Quantum Drone Team

Paul G. Kwiat UIUC

Daniel J. Gauthier OSU

OSU

Roddy Cochran, Daniel Sanchez-Rosales, and Akash Gutha (not pictured)

UIUC

Brian Wilens, AJ Schroeder, Ian Call, Hudson Jones Samantha Isaac, Andrew Conrad, Tati Rezaei (Timur Javid not pictured)

Questions?

Corresponding Author: Andrew Conrad: <u>aconrad5@illinois.edu</u>

Andrew Conrad¹, Samantha Isaac¹, Roderick Cochran², Daniel Sanchez-Rosales², Akash Gutha², Tahereh Rezaei¹, Brian Wilens¹, Daniel J. Gauthier², Paul Kwiat¹

¹Department of Physics, Illinois Quantum Information Science & Technology Center, University of Illinois Urbana-Champaign (UIUC)

²Department of Physics, The Ohio State University (OSU)

Southwestern Ohio Council for Higher Education

